
Software for the alignment of multi-wire
proportional chambers in the HARP experiment

Risto-Antti Paju, Queens’ College, Cambridge

Vacation project for Part III Physics carried out at
CERN, Geneva, Switzerland, 11/07 - 21/09/2001

under the supervision of
Dr Alan Grant and Dr Petr Gorbounov

8th October 2001

Except where specific reference is made to the work of others,this work is origi-
nal and has not been already submitted either wholly or in part to satisfy any degree
requirement at this or any other University.

Risto A Paju

1

Abstract

Multi-wire proportional chambers (MWPCs) are commonly used in high en-
ergy physics, for the tracking of charged particles. The overall tracking resolution
is determined by the separation of anode wires in each chamber.

In order to perform accurate beam tracking, the positions individual wires
in MWPCs must be known to a precision preferably higher than the chamber
resolution. This can be difficult as the wires are confined inside the chambers.
The present work with the HARP experiment at CERN used chambers whose
wire positions could only be measured to about 0.5 mm of lateral offset, and a
few milliradians of rotation about the beam axis.

A significantly higher precision is obtained via software alignment, which
finds the positions of chambers producing the best fit of the beam trajectory.
However, a fundamental theorem asserts that at least two chambers must have
known positions, in order to obtain unique values for the positions of the others.

A new method has been proposed by P. Gorbounov of the HARP group,
whereby only one chamber needs to be transversely fixed. Whendata are recorded
with this chamber in different longitudinal positions, theeffect of multiple fixed
chambers can be achieved: the other chambers’ lateral positions must be consis-
tent with all configurations of the reference chamber simultaneously.

The method has now been implemented by the author. The principle has been
verified by simulations included in the software. It has beenused with the HARP
experiment to align four crossed-wire chambers to a precision of order 1�m in
offset and 1 mrad in rotation, when data from about 400,000 events were used.
The procedure can be readily generalized for any situation where the alignment
of tracking equipment is required.

2

Contents

1 Introduction 4
1.1 HARP hadron production experiment 4
1.2 Operation of MWPCs . 4
1.3 Beam tracking . 5

2 Theoretical background 6
2.1 Basic principle of alignment . 6
2.2 A fundamental problem and its solution 7

3 Computational approach 9
3.1 Mathematical description . 9
3.2 Choice of language . 9
3.3 Optimizations . 10
3.4 Simulations . 10
3.5 Debugging . 11

4 Implementation 12
4.1 General layout . 12
4.2 Data structures . 12
4.3 Simulation . 13
4.4 Function fitting . 14

5 Results and discussion 14
5.1 Note on uncertainties . 14
5.2 Verification of the principle by simulations 14
5.3 Results from the real data . 15

6 Conclusions 15

A Program source 19

3

1 Introduction

1.1 HARP hadron production experiment

The HARP experiment utilizes the T9 beam from the Proton Synchrotron at CERN.
The protons in the beam have a tightly defined momentum, whichcan be adjusted in
the range between about 2 and 15GeV=
. The beam is directed towards a nuclear
target which is one of a choice of metals, and the produced secondary hadrons are
investigated.

The principal goals of the experiment are related to neutrino physics. The yield
of pions produced with protons of different momenta, and different targets, is one of
the main topics of interest. That information will be of importance for future designs
of proton-driven neutrino factories. These in turn can be used, in conjunction with
neutrino detection facilities, to investigate neutrino masses.

Multi-wire proportional chambers (MWPCs) are used for the accurate determina-
tion of the incoming beam trajectories. This information isutilized in monitoring the
beam envelope, which is important feedback for controllingthe beam characteristics.
In addition, it is used to find the proportion of particles that reach the target. Moreover,
tracking the individual particles will provide the positions and directions at which they
hit the target.

1.2 Operation of MWPCs

MWPCs are now commonly used for the tracking of charged particles. A brief expla-
nation of a single proportional chamber is provided to explain their operation [1].

The chamber consists of a negative (cathode) sheath surrounding a positive one
(anode), the two forming a capacitor in effect. The space in between is filled with
a noble gas or some other suitable gas. As the charged particle enters the gas, the
latter will be ionized. Electrons will then drift towards the positive anode wire, and
the acceleration provided by the electric field of the capacitor may induce secondary
ionization. Eventually electrons and ions are deposited onthe anode and cathode re-
spectively. A detectable signal is produced, as the potential of the capacitor changes
with its charge. In the so-called proportional mode, the signal will be proportional to
dE=dx of the particle.

An invention by Charpak (1968, Nobel prize in 1992), the MWPCachieves a rea-
sonably accurate method of tracking by combining an array ofproportional chambers
into one unit. It is usually a grid of parallel anode wires sandwiched between two cath-
ode planes. From the field line pattern (figure 1) it can be deduced that the wires define
independent measuring units: if the particle only passes through the field lines from
one wire, a signal will only be induced into that wire. Therefore no separate chambers
are required and the wires can be spaced by e.g. 1 mm, as in thisexperiment, which is
a satisfactory resolution in many cases.

4

Figure 1: Basic arrangement of a MWPC (Adapted from [1])

For a wire spacingd, the standard deviation of the particle position (distancepar-
allel to the wires, in the wire plane) is easily computed:

�

2

= hs

2

i � hsi

2

=

1

d

Z

d=2

�d=2

s

2

ds� 0

=

d

2

12

) � =

d

p

12

It is relatively common to get signals from two adjacent wires even when it is believed
that only a single particle passed through the wire plane. Naturally, it is possible
that the particle passes through the border between adjacent wire-zones because its
trajectory is angled relative to the normal to the plane. In this experiment, these events
are accepted. Events with a higher number of signals (hits) per plane, of those pairs of
signals not from adjacent wires, are rejected by the software trigger.

There exists another mechanism by which multiple hits per plane can be detected.
The products of ionization may enter the field of an adjacent wire. These can be diffi-
cult to distinguish between the above events, particularlyin this experiment where the
signal strengths are not recorded due to the limitations of data processing. However, it
is believed that such cases are sufficiently rare to be insignificant.

1.3 Beam tracking

It is often the case that MWPCs are arranged in pairs with the wire sets orthogonal
to each other. This could be used to approximate thexy coordinates of the particle
trajectory in a plane. Of course the two sets of wires cannot be physically in the same
plane, but the approximation can be improved arbitrarily byhaving a sufficiently small
z-separation. In HARP a separation of about 10 mm is achieved by having a common
cathode plane for both sets of wires. That pair is then in facta single chamber and
called a MWPC as well. There are in total four such chambers inHARP, as illustrated
in figure 2.

5

Beam
Ch.3 Ch.2 Ch.1

Ch.4

96

1

1

96

1

1

11

96

1

96 96
96

48

1

Foc.B Foc.B Foc.B Foc.B

3095

835
418

3512 39301163

o45 48

1932

up

down

Z
X

Y

Gex
(control room)

Bellegarde

Figure 2: Layout of HARP MWPCs. The distances are in millimetres, and measured
from the centres of chambers. (Adapted from [2])

However, it is not necessary to make the approximation withxy planes. The tra-
jectory of the particle can be reconstructed by fitting a straight line, or perhaps a more
general curve, to the pattern of wires that are hit. This is done via a least squares
method where the residuals are the squared distances between the wires and the tra-
jectory. Nevertheless, it is more convenient from the pointof view of construction, to
arrange the wire planes in pairs which share a cathode plane.

There is inevitably a level of interaction between the particle and the MWPC, hence
the straight line trajectory is only an approximation. It is, however, an enormously
complex task to compute the precise interactions and modifythe straight-line picture.
Moreover, the high momentum of the particle (around 2GeV/
 in HARP) suggests
that the deviations from straight line are negligible, especially considering the overall
precision of tracking.

While the precision is dependent on� = d=

p

12 for MWPCs with a wire spacing
of d, it is improved with an increasing number of chambers.

2 Theoretical background

2.1 Basic principle of alignment

Alignment is the process of determining the positions (x; y; z and rotations) of the
MWPCs. Basically it is done by direct mechanical measurements, but they can only
performed to within about 0.5 mm. The problems arise mainly from the construction
of MWPCs. The wires are not mechanically accessible from theoutside, so their
positions can only be approximated. Moreover, the relation(separation and angle of
rotation) between the two wire planes in a chamber is not known exactly. Therefore it
is essential to treat the two sets of wires as independent.

6

More precise alignment can be performed as follows. First weassume certain
positions and rotations (collectively called ’alignment parameters’) for all wire planes.
Then for each event, trajectory fitting is performed, based on these parameters. The
total sum of normalized squared residuals,�

2, is computed to indicate the overall
goodness of fit. The process is repeated using slightly different alignment parameters.
The actual alignment parameters are found when�

2 is at its minimum (best fit) value.
In practice,�2 is treated as a function of the alignment parameters, while the beam

data are constant parameters. To minimize that function is atedious calculation, so in
practice a specialized software is used. At CERN the common choice has been to use
the MINUIT [3] package.

2.2 A fundamental problem and its solution

It is easy to see that�2 is unchanged if the entire system of MWPCs is moved or
rotated. The beam trajectories, which are computed on the basis of signal wires, will
be shifted accordingly. The trivial answer to this problem is to have one chamber fixed
with known coordinates. The alignment parameters of other planes are then computed
relative to that. Nevertheless, unique parameters cannot be found simply by fixing one
plane. Translations or rotations linear inz would still leave the parameters undefined,
as depicted in figure 3. This was well exhibited by the simulations used to test the
program.

Thus more than one of the planes are to be fixed. Moreover, as one wire plane
is insensitive to the dimension along the wires, two or more planes must be fixed in
each of two dimensions. In the usual arrangement with each MWPC consisting of two
crossed wire planes, two fixed chambers could be used to achieve this.

The chambers may have non-zero lateral and rotational deviations, as long as they
are known. But this is somewhat against the original argument, because the calculation
of the alignment parameters would be unnecessary if we couldmeasure them directly.

A solution suggested by P. Gorbounov has been to use one chamber, fixed in the
lateral and rotational senses, in different longitudinal positions. As the MWPCs are
mounted on metal rails, this can be done to a high precision. Even when the rails are
not exactly parallel to thez-axis, the deviation is easy to measure when compared to
measuring the actual positions of the wires.

The above procedure of alignment is then performed with setsof data, with the one
chamber in differentz-positions.�2 is the total sum of normalized squared residuals
over all configurations, with the same alignment parametersused for the non-fixed
planes in all cases. Naturally this introduces further complications to the method,
but with well designed software utilizing sufficient computing power, the desired goal
remains accessible.

7

B

z-axis

hit wires

A

beam
trajectory

Figure 3: A simplified analogy of the fundamental problem. The hits on each plane
are unchanged. These are only two possible beam trajectories, equally well fitted to
the hits.

8

3 Computational approach

3.1 Mathematical description

The following notation has been adapted from P. Gorbounov’sprevious work on the
subject [2]. Each wire in theith wire plane is represented by the equations

z = z

i

�x sin �

i

+ y
os �

i

+�

i

(w) + Æ

i

= 0

where�
i

is the angle of the wire w.r.t. thex-axis and�
i

the intended offset from the
z-axis, normal to the wire direction. The latter is calculated from the wire numberw
via �

i

= s

i

(C

i

� w) using constantss
i

; C

i

. Also �

i

= �

0;i

+ Æ�

i

. ThusÆ
i

andÆ�
i

are
the deviations from ideal, or alignment parameters.

Chamber plane �

0

=degrees s=mm
 z=mm
1 1 0 +1 48.5 3930 + 5

2 90 +1 48.5 3930 � 5

4 3 -135 �4 24.5 3512 + 5

4 135 �4 24.5 3512 � 5

2 5 -90 �1 48.5 3095 + 5

6 0 +1 48.5 3095 � 5

3 7 -90 �1 48.5 1163 + 5

8 0 +1 48.5 1163 � 5

Table 1: The current parameters of the MWPCs in HARP (adaptedfrom [2])

It is approximated that the wire planes are normal to thez-axis and any tilts in this
sense can be neglected. Naturally it would be possible to include these deviations into
the alignment procedure as well. However, their effect is estimated to be considerably
smaller than that of the above parametersÆ

i

andÆ�
i

.

3.2 Choice of language

The author was initially familiar with FORTRAN 90. It also seemed the most appro-
priate language for numerical applications of the requirednature. On one hand, this is
due to the intrinsic functions and the powerful syntax e.g. for array handling. On the
other hand, it was expected that a wealth of number-crunching algorithms would be
readily available as recompiled libraries. Probably the most important of these is the
MINUIT function minimization package.

At CERN it first appeared that only the GNU compiler for FORTRAN 77, g77,
would be available. Most of the code for HARP beam analysis was written in F77, as
were the libraries. Work on this program was started in F77 which was a disappoint-
ment, because this version of FORTRAN lacks many of the syntactical features that

9

make F90 a powerful physics language. There were also great difficulties in dynam-
ical allocation of memory. Other languages such as C were considered at this point,
however a PGI F90 compiler was eventually found and it even supported g77 libraries.

3.3 Optimizations

The function that is to be minimized performs a large number of calculations on each
call. In this experiment, there are six sets of data: three different positions of one wire
chamber, and two types of beams in the sense of focusing. Eachset has initially had
100,000 events, and after removing ambiguous events via a software trigger, about
70,000. Therefore the function performs about 400,000 least square fits in producing
the �

2-value. In the minimization stage, hundreds or thousands function calls are
executed. Therefore it is crucial to optimize the performance of the program by any
means necessary, while not compromising numerical accuracy.

FORTRAN 90 has a powerful syntax with ’array expressions’ and these were used
as widely as possible, both to make the source code simpler and to increase perfor-
mance. The program was developed on Linux on a dual Pentium III workstation, so
the compiler could utilize the parallelity of the source code by delegating work to both
processors. In addition, the vector instructions (SSE) were accessible with the com-
piler to provide further optimization.

As the rotational deviations would be something in the orderof milliradians, it was
expected that differential formulae should be used to compute the sines and cosines of
angles. They would provide sufficient precision and they were believed to be faster.
However, using the real trigonometric functions turned outslower only by a few per-
cent, and it was decided to use them instead for better precision. This was a good sign
proving that there actually is a section called ’math coprocessor’ in the CPU, providing
assembler instructions of the trigonometric functions.

It can be argued that there are many obvious optimizations tobe done. One reason
is, of course, that the program needs to be used in a production environment. The
code cannot then be optimized indefinitely, and there are more important bug-fixes and
integrity checks to be made. Less obvious is the fact that, after some parallelization is
made to fully employ both processors of the PC, any further parallelization is in vain
because all of the computing power is already in use. There have been many decisions,
thus, to leave the code with ordinarydo loops instead of array expressions even if the
latter would have been syntactically possible.

3.4 Simulations

From the beginnings of the project it was clear that a sectionfor producing simulated
data was to be included. Generally, in projects of this kind,simulations are a useful
’tool’ for debugging the code. Naturally this method requires that the simulation part
itself is sufficiently free of bugs.

10

On the other hand, the simulated data generation involves the inverses of many
routines of the actual program. For example, the conversionof positional coordinates
to wire patterns is exactly the opposite of what is done by thefitting routine. Therefore,
a bug in either is only left unnoticed if exactly the same mistake is made in both. The
probability for this is believed to be significantly lower than that for a single bug.

Another use for simulations is perhaps of even greater importance. The method
for circumventing the fundamental problem of alignment hasnot been used before,
as far as the HARP group is aware. Simulated data with known deviations from the
ideal positions provides a rigorous way of testing the procedure. The wire patterns
generated this way are fed into the minimization routine, and the resulting alignment
parameters can easily be compared to the actual deviations.

3.5 Debugging

The use of simulations as debugging aids has already been mentioned. However, they
are generally the more useful, the higher level of code is being analyzed. For more
obscure details and syntactical mistakes, different approaches are required.

An obvious starting point for debugging is the compiler itself, with the error mes-
sages it produces, along with the relevant line in the sourcefile. However, there are
invariably more subtle mistakes that do not interrupt the compilation, and are mani-
fested as runtime errors. In these cases, it has proved instructive to print the values of
some variables at certain critical points of the execution.At the very least, these would
indicate the point in the code where the program crashes, andalso produce specific
information on the state of the program.

A particular problem with this project has been the use of variables of different
precision. Most of the library subroutines use 64-bit precision and this was also chosen
as the default precision for most variables. However, some of the library routines were
only available as 32-bit versions. This was not a great problem, as FORTRAN 90
handles different types intelligently: for example the code

real*8 :: pi = 3.141592653589793
real*4 x

x = 2*pi

is valid FORTRAN 90 and the variablex is assigned the correct value.
The trouble arises, for example, when areal*8 variable is passed to a subroutine

which usesreal*4 variables only. The library subroutine receives a string of32 bits
and treats them as a 32-bit real variable.

Printing values of intermediate variables is good practicethen, because unexpected
values can be quickly recognized. This is most obvious when the variables are known
to be positive only, and the printed values come out negative.

It should also be noted that 32-bit precision would be adequate if we only judged
by the uncertainties in the final results. Usingreal*4 variables only would certainly

11

improve the execution time. However, the choice of 64-bit precision is to minimize
rounding errors in the many intermediate stages. With the large number of both the
data, and the number of function calls, the cumulative errors might be significant, had
we only used 32 bits for real variables.

4 Implementation

4.1 General layout

The program makes extensive use of themodule structure of FORTRAN 90. It pro-
vides namespaces that can be accomplished withcommon blocks in F77, but with
more flexibility. A particular improvement over modules is the ability to use dynami-
cally allocatable arrays.

Many parameters and even the event data are passed on via modules. Firstly, this is
essential for memory management because one prefers not to make a copy of the data
array with about 1.4 millionreal*8 variables. On a PC with 256 MB of RAM, only
one copy could be used without having to resort to virtual disk-swapping memory. This
alternative was proved very slow by running two copies of theprogram simultaneously.

Moreover, the function to be minimized would have a very complicated interface if
every parameter was to be included as its arguments. It should be noticed that in terms
of minimization, the event data are in fact constant parameters. The only variables then
are the sixteen alignment parameters:Æ

i

(d(i)) andÆ�
i

(dtheta(i)) with i = 1:::8.
As discussed before, some of these will be fixed, but this is made at a higher level to
keep the program as general and modular as possible.

Another positive consequence of themodule structures is that the program can
be thoroughly divided into subroutines to increase the clarity and flexilibity of the
code. Otherwise the subroutines could become complicated due to the large number
of arguments, which might compromise the intended clarity and maintainability.

4.2 Data structures

The structure for containing the wire hit patterns was adapted from related programs
by P. Gorbounov. For one event, it is an integer array of rank 2, with the contents
described by the following comment:

! hit(i, 1) = no. of hits per i’th plane
! hit(i, j+1) = wire number of j’th hit

As mentioned above, a ’good’ event can have a maximum of two hits per plane, and
these must be adjacent. Thereforej � 2. For the entire set of data, further indices
are introduced to denote the event number in a configuration,and the configuration
number.

12

For the purpose of least squares fitting in the minimization routine, the hit patterns
are converted into spatial coordinates. For a single event we use a rank 2 array, named
thus to separate it from the lowercase delta:

big_d(i; 1) = �

i

big_d(i; 2) = plane number

This structure was chosen because of the fitting routine; there can be 0, 1 or 2 hits
per plane, but there is exactly one linear equation per each hit i. While the conversion
from the hit pattern is slightly complicated, it is better for the overall performance to
have the fitting stage as fast as possible. As above, two further indices are introduced
to account for the entire data set. However, this means that each ’slice’ ofbig_d(i,
j) has a fixedi dimension. Although one can count the non-zero plane numbers of
each event, it has proved faster to store the number of hits per event in the dedicated
arraynum_hits.

As the solution to the fundamental alignment problem requires, there are sets of
data taken with different positionsz

i

. Although thez-positions have several values
only for one chamber i.e. two planes, it has been decided for clarity to derive allz

i

from a rank two array:

do j=1, nconfs
z = zconf(:, j)

! (simulation or fitting over all data in the conf.)

end do

4.3 Simulation

The subroutinesimulation is used to generate a random event. It starts by two
random points, each located on one of the extreme wire planes. They can be anywhere
on the rectangular planes instead of being confined to the wires. Parameters for the
straight line joining them are computed. They are used to findthe hit wire numbers on
each wire plane, by finding the wire closest to the beam line oneachz = z

i

plane.
To produce a realistically large set of data, the wrapper routinesim_set first pro-

duces random values for the deviationsÆ

i

and�
i

for each planei. With these as a basis,
simulation is then run in a loop through a number of times to generate a number
of events in each configuration. The relevant set ofz

i

is used for each configuration,
as described in section 4.2.

A library subroutine [4] is used to generate the random numbers. UNIX time is
chosen as the random seed, as it is readily available and non-repeating.

13

4.4 Function fitting

The subroutinebeam_fit is used as a wrapper around theTLS [5] library routine,
which is a general least squares fitting algorithm. The residuals in this case are the
normalized distances between the beam trajectory and the wires with induced signals.
TLS performs the minimization of the sum of the squared residuals, to produce the pa-
rameters of the beam trajectory (straight line). However, the most important outcome
for the alignment is the minimized sum of squared residuals.

With TLS one has the choice to solve several systems of linear equations at once
[5]. It is possible that this would increase performance noticeably, when compared to
looping over individual processes. However, this feature could not be used because in
the real data, the number of hits per event is not fixed. As eachhit corresponds to one
equation in the trajectory fitting routine, each event will have to be treated separately.

TheMINUIT package is used to minimize the total sum of squared residuals by
varying the alignment parameters. The function to be minimized is coded as the sub-
routineFCN with a definite kind of interface as required byMINUIT. The input argu-
ments ofFCN are in an array of 16 elements:Æ�

i

andÆ
i

with i = 1:::8. InsideFCN,
beam_fit is called in a loop over all configurations, and all events in each config-
uration. For each configuration, the correct set ofz

i

is used. In addition, the correct
deviations of the fixed planes are set per configuration.

MINUIT requires initial guess values for the alignment parametersin order to know
where to start the search. It should be stressed that these are either all zero, or randomly
chosen. This is important when testing the algorithm with simulated data: the mini-
mization routine does not know the real values of alignment parameters. Therefore the
results presented in section 5.2 reflect the integrity of theminimization routine. This
is essential in the case of real data when the actual deviations cannot be known.

5 Results and discussion

5.1 Note on uncertainties

With MINUIT, the default scheme for determining the parameter errors is based on
standard chi-squared methods. The minimized value of�

2 is defined to have unit
uncertainty, from which the corresponding uncertainties in alignment parameters are
derived.

5.2 Verification of the principle by simulations

Initially, simulations were made with only one or zero fixed chambers. As was ex-
pected, the resulting alignment parameters had no relationto the simulated deviations.
They were not even consistent, in the sense that the same set of deviations would pro-
duce different alignment parameters on different runs of the minimization program.
Based on this, the author was convinced of the severity of thefundamental problem.

14

With the scheme of one chamber in three positions in operation, the outcomes
of simulations suddenly changed into something consistent. An example of a full-
sized simulation/minimization run is provided below. There are six configurations
with 76,000 events each, with planes 3, 4, 7 and 8 fixed.

At this time there was no data available from the chamber withplanes 3 and 4
so it has been omitted in the simulation as well. Planes 7 and 8are in the chamber
with different z-positions, and different deviations in each case, so theiralignment
parameters are not computed.

It can be seen from the above figures, that the minimization results agree with
the initial deviations within uncertainty limits. Moreover, the final value of�2 is ap-
proximately half of the initial, even though the latter is based on the ’ideal’ hits from
simulated trajectories, showing another aspect of the success of the minimization.

5.3 Results from the real data

Test runs were carried out using only a part of the data. The noted consistency between
the alignment results from different sets of data indicatesa further level of success for
the method. The set of alignment parameters obtained is provided in table 3; the data
from planes 3 and 4 are included here.

6 Conclusions

A new method for the alignment of multi-wire proportional chambers, proposed by P.
Gorbounov, has been implemented and tested by the author. The improvement over
conventional alignment procedures is in that the one chamber that is laterally fixed, is
employed in a number of longitudinal positions. The overalleffect is the same as that
achieved with multiple fixed chambers, with the advantage that the lateral coordinates
need to be known only for one chamber.

Both simulation runs, and tests on actual data, have verifiedthat the method is
successful in solving the fundamental problem of alignment. It has eventually been
used with the HARP experiment to align four crossed-wire chambers. The precision
obtained with about 400,000 events is of order 1�m in lateral offset and 1 mrad in
rotation.

References

[1] C. Joram: Particle Detectors, CERN Summer Student Lecture Series 2001

[2] P. Gorbounov, L. Scotchmer: MWPC: Layout and geometry,

http://harp.web.cern.ch/harp/Classified/Sub_detectors/MWPC/

15

Simulated deviations

plane dtheta/rad
1 6.7297556E-02
2 4.8374962E-02
3 0.0000000E+00
4 0.0000000E+00
5 3.7635576E-02
6 3.2903196E-03
7 0.0000000E+00
8 0.0000000E+00

plane delta/mm
1 1.213176
2 -3.092195
3 0.0000000E+00
4 0.0000000E+00
5 -3.283027
6 -3.383858
7 -0.4517817
8 1.638722

Alignment parameters from MINUIT

plane dtheta/rad +/-
1 6.7256272E-02 5.3191496E-05
2 4.8352595E-02 6.8815985E-05
3 0.0000000E+00 0.0000000E+00
4 0.0000000E+00 0.0000000E+00
5 3.7636429E-02 5.6742949E-05
6 3.2561109E-03 4.3560252E-05
7 0.0000000E+00 0.0000000E+00
8 0.0000000E+00 0.0000000E+00

plane delta/mm +/-
1 1.213263 2.1140520E-03
2 -3.092112 2.2907092E-03
3 0.0000000E+00 0.0000000E+00
4 0.0000000E+00 0.0000000E+00
5 -3.283680 1.4097507E-03
6 -3.384363 1.3028856E-03
7 0.0000000E+00 0.0000000E+00
8 0.0000000E+00 0.0000000E+00

Table 2: Simulated deviations and the corresponding results of alignment

16

Alignment parameters from MINUIT

plane dtheta/rad +/-
1 5.0818520E-03 4.2462247E-04
2 4.8763724E-03 8.4756484E-04
3 -4.2760791E-03 1.7678936E-04
4 -8.9576663E-03 1.6403430E-04
5 2.8447525E-03 2.9622624E-04
6 5.4293168E-03 3.6899984E-04
7 0.0000000E+00 0.0000000E+00
8 0.0000000E+00 0.0000000E+00

plane delta/mm +/-
1 9.0514682E-02 1.8791633E-03
2 -2.900985 6.3912272E-03
3 2.436198 2.2991272E-03
4 0.5246968 3.5192200E-03
5 1.233972 2.0006932E-03
6 -0.7262853 1.1148308E-03
7 0.0000000E+00 0.0000000E+00
8 0.0000000E+00 0.0000000E+00

Table 3: Alignment parameters from real data

17

[3] CERN Program Library Long Writeup D506: MINUIT,

http://wwwinfo.cern.ch/asdoc/minuit/minmain.html

[4] CERN Program Library Writeup V113: Fast Uniform Random Number Generator,

http://wwwinfo.cern.ch/asdoc/shortwrupsdir/v113/top.html

[5] CERN Program Library Writeup E230: Constrained and Unconstrained Linear
Least Squares Fitting,

http://wwwinfo.cern.ch/asdoc/shortwrupsdir/e230/top.html

18

APPENDIX

A Program source

! HARP MWPC Alignment by Risto-Antti Paju <risto.a.paju@iki.fi> 2001
! with guidance from my supervisors at CERN: Alan Grant, Petr Gorbounov

! Also thanks to Frederick James of CERN for help on MINUIT

! Notes:
!
! subroutine get_hits (reading data files) adapted from code by P. G.

module common_params
implicit none

! #planes, #wires/plane, max #beams/config
integer, parameter :: nplanes = 8, max_ndata = 76000

! 3 different z-positions of one chamber
! * 2 types of beam for each
integer, parameter :: nconfs = 6

integer ndata(nconfs)

! max #hits/plane
integer, parameter :: maxhpl = 2
integer, parameter :: maxhits = maxhpl * nplanes

real*8, dimension(nplanes) :: z
real*8, dimension(nplanes, nconfs) :: zconf

! start & end areas at z(1) and z(8) are squares:
real*8, parameter :: width = 96 ! of planes in mm

real*8, parameter :: pi = 3.14159265358979323846

! worst fraction of d**2 to discard from sum(d**2)
real*8, parameter :: discard = 0.02

real*8, dimension(maxhits, 2, max_ndata, nconfs) :: delta_set
integer, dimension(max_ndata, nconfs) :: num_hits ! total per beam

real*8, dimension(nplanes) :: iangle, norm

19

end module common_params

module data_files
use common_params

character(len=11) :: file_prefix = "data/align."
character(len=4), dimension(nconfs) :: file_nos = (/"3897", "3900", "3902",

end module data_files

module conversion_params
use common_params

real*8, parameter, dimension(nplanes) :: &
& s = (/1, 1, 4, 4, 1, 1, 1, 1/), &
& c = (/48.5, 48.5, 24.5, 24.5, 48.5, 48.5, 48.5, 48.5/)

! s is also used for the normalization constants

end module conversion_params

module minim_params
use common_params
! step, limit for changing dtheta (radians) & d (mm)
! zero limit = unbounded
! 1 degree = 0.017 radians
real*8 :: dtstep = 0.005, dtlimit = 0, dstep = 0.1, dlimit = 0

! +/- limits for randomly chosen init values
real*8 :: dtinit = 0, dinit = 0
! ditto for simulated deviations
real*8 :: dt_slimit = 0.2, d_slimit = 7

integer, parameter :: nfixed = 2
integer, dimension(nfixed) :: fixed = (/7, 8/)

! the lateral position of chamber 3 varies with z.. complication++
real*8, dimension(nplanes, nconfs) :: dt_fixed, d_fixed

character*10 dtname(nplanes), dname(nplanes)

integer narg, npari, nparx, istat
integer ierflg, ivarbl

real*8 xval(2*nplanes), error, fmin, fedm

20

! change of min. function value that determines param. errors
real*8 :: up = 1 ! FVAL is sum of norm. squared residuals

end module minim_params

subroutine initialize_params
use minim_params ! includes common_params
use conversion_params

real*4, dimension(2*nconfs) :: ranx

! normalization constants for distances
! = grid separations in mm
norm = abs(s) / dsqrt(12.)

! ideal, intended angles of wires w.r.t. the x-axis
iangle(1) = 0
iangle(2) = pi / 2
iangle(3) = -3 * pi / 4
iangle(4) = 3 * pi / 4
iangle(5) = -pi / 2
iangle(6) = 0
iangle(7) = -pi / 2
iangle(8) = 0

! z-positions of wire planes
zconf(:, 1) = (/3934+5, 3934-5, 3512+5, 3512-5, 3095+5, 3095-5, 1270+5, 1270-5/)

zconf(:, 2) = zconf(:, 1)
zconf(:, 3) = zconf(:, 1)

zconf(7:8, 2) = zconf(7:8, 1) + 553.5
zconf(7:8, 3) = zconf(7:8, 2) + 552

zconf(:, 4:6) = zconf(:, 1:3)

! later, some of these will be non-zero
dt_fixed = 0
d_fixed = 0

d_fixed(7, 2) = -0.3 ! flipped sign due to positive s
d_fixed(7, 3) = -0.6
d_fixed(8, 2) = 0.22
d_fixed(8, 3) = 0.5

21

d_fixed(:, 4:6) = d_fixed(:, 1:3)

num_hits = 0
ndata = max_ndata
delta_set = 0

end subroutine initialize_params

subroutine get_delta(hit, big_d, nhits)
use conversion_params
integer i, j, k

! hit(i, 1) = no. of hits per i’th plane
! hit(i, j+1) = the wire number of j’th hit
integer, intent(in), dimension(nplanes, 1+maxhpl) :: hit
real*8, intent(out), dimension(maxhits, 2) :: big_d

k = 1
do i=1, nplanes

do j=2, hit(i, 1)+1
big_d(k, 1) = s(i)*(c(i) - hit(i, j))
big_d(k, 2) = dble(i)
k = k + 1

enddo
enddo

nhits = sum(hit(:, 1))

end subroutine get_delta

subroutine get_hits(hit_set)
use data_files

integer i, j, k
integer*2 ibuf(9)
integer temp(8)

integer, intent(out), dimension(nplanes, 1+maxhpl, max_ndata, nconfs) :: hit_set
external get_hits

hit_set = 0

do k=1, nconfs

22

open(1, file=trim(file_prefix)//file_nos(k), status="old", form="unformatt
temp = 0
do i=1, max_ndata

read(1, end=999) ibuf

temp(1)=ibuf(2)
temp(2)=ibuf(3)

temp(3)=ibuf(8)
temp(4)=ibuf(9)

temp(5)=ibuf(4)
temp(6)=ibuf(5)
temp(7)=ibuf(6)
temp(8)=ibuf(7)

do j=1, nplanes
if (temp(j) .gt. 0) hit_set(j, 1, i, k) = 1
hit_set(j, 2, i, k) = mod(temp(j), 100)
hit_set(j, 3, i, k) = temp(j) / 100
if (hit_set(j, 3, i, k) .gt. 0) hit_set(j, 1, i, k) = 2

! bug hunt (trigger)
if (hit_set(j, 3, i, k) .gt. 0) then

if (abs(hit_set(j, 2, i, k) - hit_set(j, 3, i, k)) .gt. 1) then
print *, "TRIG ERROR:", j, k, hit_set(j, 2, i, k), hit_set(j,

end if
end if

enddo

! bug hunt
! print *, i, temp(3:4)

end do
close(1)

999 ndata(k) = i - 1

end do

end subroutine get_hits

subroutine get_delta_set (hit_set)

23

use common_params

external get_delta, trigger

real*8, dimension(maxhits, 2) :: big_d
integer, intent(in), dimension(nplanes, 1+maxhpl, max_ndata, nconfs) :: hit_set
integer hit(nplanes, 1+maxhpl), nhits, i, j, k

delta_set = 0
do j=1, nconfs

k = 0
do i=1, ndata(j)

hit = hit_set(:, :, i, j)
call get_delta(hit, big_d, nhits)
k = k + 1
delta_set(:, :, k, j) = big_d ! passed on..
num_hits(k, j) = nhits ! ..via module common_params

enddo

end do

end subroutine get_delta_set

subroutine beam_fit(a, b, d, big_d, fit_params, nhits)
! TLS assumes abnormal convention of row/column order!!!
! and uses 32-bit precision !!!

use common_params

integer m1, m, l, ier, n
COMMON /TLSDIM/ m1, m, n, l, ier

real*8, intent(in), dimension(nplanes) :: a, b, d

real*8, dimension(maxhits, 2), intent(in) :: big_d
integer, intent(in) :: nhits

real*8, dimension(5), intent(out) :: fit_params

! note the precision
real*4, dimension(4, maxhits) :: dm
real*4, dimension(maxhits) :: rhs
real*4 eps, lp(4), aux(8)

integer i, plane

24

integer, dimension(4) :: ipiv

n = 4
l = 1
eps = 0

do i=1, nhits
plane = nint(big_d(i, 2))

rhs(i) = -(big_d(i, 1) + d(plane)) / norm(plane)
dm(1, i) = a(plane)*z(plane) / norm(plane)
dm(2, i) = a(plane) / norm(plane)
dm(3, i) = b(plane)*z(plane) / norm(plane)
dm(4, i) = b(plane) / norm(plane)

enddo

m = nhits ! # linear equations

call TLS(dm(:, 1:m), rhs(1:m), AUX, IPIV, EPS, lp)

fit_params(1:4) = lp

fit_params(5) = aux(1)

end subroutine beam_fit

subroutine simulation (hit, fit_params, dtheta, d)
! Simulation with given deviations from ideal angles.
! Only one hit per plane.
use conversion_params

external get_delta, get_d2

real*8, dimension(nplanes) :: a, b, x, y
real*8, dimension(nplanes), intent(in) :: dtheta, d
real*8, dimension(maxhits, 2) :: big_d, const
real*8, dimension(5), intent(out) :: fit_params
integer, dimension(nplanes, 1+maxhpl), intent(out) :: hit

integer, dimension(nplanes) :: w ! note this is a local variable

real*4, dimension(nplanes):: ranx ! note the precision

integer plane, i, j, nhits

25

call ranmar(ranx, 4)

x(1) = (ranx(1) - 0.5)*width
x(8) = (ranx(2) - 0.5)*width
y(1) = (ranx(3) - 0.5)*width
y(8) = (ranx(4) - 0.5)*width

! the line has the parametric equation
! x = ax*z + bx
! y = ay*z + by

ax = (x(1) - x(8)) / (z(1) - z(8))
ay = (y(1) - y(8)) / (z(1) - z(8))

bx = x(1) - ax*z(1)
by = y(1) - ay*z(1)

fit_params(1) = ax
fit_params(2) = bx
fit_params(3) = ay
fit_params(4) = by

! init #planes
big_d(1:nplanes, 2) = (/(dble(i), i=1, nplanes)/)

big_d(nplanes+1:maxhits, 2) = 0

x = ax*z + bx
y = ay*z + by

! Differential formulae would be _slightly_ faster, but we want precision here..
a = -sin(iangle + dtheta)
b = cos(iangle + dtheta)

big_d(1:nplanes, 1) = - (a*x + b*y + d)

! convert to actual wire numbers (inverse of get_delta !-)
w = nint(c - (big_d(1:nplanes, 1) / s))

hit = 0

hit(1:nplanes, 1) = 1
hit(1:nplanes, 2) = w

! quantize big_d for calculation of d**2

26

! (and check consistency of get_delta :-)

call get_delta(hit, big_d, nhits)

const = 0
const(1:nplanes, 1) = big_d(1:nplanes, 1) + d
const(1:nplanes, 2) = big_d(1:nplanes, 2)

call get_d2(fit_params, a, b, const, nhits)

end subroutine simulation

subroutine get_d2(fit_params, a, b, const, nhits)
use common_params

real*8, dimension(nplanes), intent(in) :: a, b
real*8, dimension(maxhits, 2), intent(in) :: const
real*8 fit_params(5)
integer i, plane
integer, intent(in) :: nhits

fit_params(5) = 0
do i=1, nhits

plane = nint(const(i, 2))
fit_params(5) = fit_params(5) + ((a(plane)*(fit_params(1)*z(plane) + fit_params(2))

enddo

end subroutine get_d2

subroutine fcn (npar, GRAD, FVAL, XVAL, IFLAG, futil)
! to be used with minuit
use minim_params

external beam_fit

integer i, j, k
integer, intent(in) :: npar, iflag

real*8 fit_params(5)
real*8, dimension(2*nplanes), intent(in) :: xval

real*8, intent(out) :: fval

real*8, intent(out), dimension(npar) :: grad

27

real*8, dimension(nplanes) :: dtheta, d, a, b

real*4 d2_set(max_ndata) ! for flpsor

dtheta = xval(1:nplanes)
d = xval(nplanes+1:2*nplanes)

fval = 0
do j=1, nconfs

z = zconf(:, j)

! (fixed is used as an array subscript :-)
dtheta(fixed) = dt_fixed(fixed, j)
d(fixed) = d_fixed(fixed, j)

! We could use differential formulae, but the true ones are not that slow
a = -sin(iangle + dtheta)
b = cos(iangle + dtheta)

do i=1, ndata(j)

call beam_fit(a, b, d, delta_set(:, :, i, j), fit_params, num_hits(i,
d2_set(i) = fit_params(5)

enddo

! discard the worst fraction
call flpsor(d2_set, ndata(j))
k = nint((1. - discard) * ndata(j))
fval = fval + sum(d2_set(1:k))

enddo

end subroutine fcn

subroutine sim_set(hit_set, d2)
use minim_params

external simulation

integer i, j, k
integer, intent(out), dimension(nplanes, 1+maxhpl, max_ndata, nconfs) :: hit_set
real*8 fit_params(5)
integer, dimension(nplanes, 1+maxhpl) :: hit
real*8, intent(out) :: d2
real*8 dtemp

28

real*8, dimension(nplanes) :: dtheta, d

real*4 ranx(2*nplanes) ! note the precision

print *, "lateral deviations of planes:"
call ranmar(ranx, nfixed*nconfs)
do i=1, nfixed

do j=1, nconfs
d_fixed(fixed(i), j) = 20.*(ranx((i-1)*nconfs+j)-0.5)
print *, "plane/config/dev:", fixed(i), j, real(d_fixed(fixed(i), j))

end do
end do
print *, ""

call ranmar(ranx, 2*nplanes)
do i=1, nplanes

dtheta(i) = (ranx(i) - 0.5) * dt_slimit
d(i) = (ranx(i+nplanes) - 0.5) * d_slimit

enddo

d2 = 0
do j=1, nconfs

dtemp = 0
z = zconf(:, j)

! (fixed is used as an array subscript :-)
dtheta(fixed) = dt_fixed(fixed, j)
d(fixed) = d_fixed(fixed, j)

do i=1, max_ndata
call simulation (hit, fit_params, dtheta, d)
dtemp = dtemp + fit_params(5)
hit_set(:, :, i, j) = hit

enddo
d2 = d2 + dtemp

enddo

open(1, file="sim.dev", status="replace")
write(1, *) "Simulated deviations"
write(1, *) ""
write(1, *) " plane dtheta/rad"
do i=1, nplanes

write(1, *) i, real(dtheta(i))
end do

29

write(1, *) ""
write(1, *) " plane delta/mm"
do i=1, nplanes

write(1, *) i, real(d(i))
end do
close(1)

end subroutine sim_set

subroutine print_args
use minim_params

real*8 bar

real*8, dimension(nplanes) :: dtheta, d, dterr_pb, derr_pb

real*8, dimension(nplanes):: dterr_p, dterr_m, derr_p, derr_m

! get arguments and their errors
do i=1, nplanes

call mnpout(i, dtname(i), dtheta(i), error, -dtlimit, dtlimit, ivarbl)
call mnpout(i+nplanes, dname(i), d(i), error, -dlimit, dlimit, ivarbl)
call mnerrs(i, dterr_p(i), dterr_m(i), dterr_pb(i), bar)
call mnerrs(i+nplanes, derr_p(i), derr_m(i), derr_pb(i), bar)

enddo

call mnstat(fmin, fedm, error, npari, nparx, istat)

open(1, file="align.out", status="replace")

write(1, *) "Alignment parameters from MINUIT"
write(1, *) ""
write(1, *) " plane dtheta/rad +/-"! +err -err"
do i=1, nplanes

write(1, *) i, real(dtheta(i)), real(dterr_pb(i))!, real(dterr_p(i)), real(dterr_m(i)
enddo
write(1, *) ""

write(1, *) " plane delta/mm +/-"! +err -err"
do i=1, nplanes

write(1, *) i, real(d(i)), real(derr_pb(i))!, real(derr_p(i)), real(derr_m(i))
enddo

close(1)

30

print *, "minuit’ed:", real(fmin), "+/-", real(fedm)

end subroutine print_args

subroutine minimization
use minim_params

external fcn, print_args

real*8, dimension(2*nplanes) :: arglis
real*4 ranx(2*nplanes)
real*8, dtl, dl

logical, dimension(nplanes) :: is_fixed = (/nplanes*.false./)

is_fixed(fixed) = .true.

call ranmar(ranx, 2*nplanes)
ranx = 2*(ranx - 0.5)

arglis = 0

call mninit(5, 6, 7)
call mnseti("The alignment of MWPCs in HARP")

! prepare limits for variables
dtname = "dtheta_"
dname = "d_"

do i=1, nplanes
! these names work only if nplanes .le. 9
dtname(i)(8:) = achar(48+i)
dname(i)(3:) = achar(48+i)

if (is_fixed(i)) then
dtl = 0
dl = 0

else
dtl = dtinit*dble(ranx(i))
dl = dinit*dble(ranx(i+nplanes))

endif

call mnparm(i, dtname(i), dtl, dtstep, -dtlimit, dtlimit, ierflg)
call mnparm(i+nplanes, dname(i), dl, dstep, -dlimit, dlimit, ierflg)

enddo

31

arglis = 0

call mnexcm(fcn, "set nog", arglis, 0, IERFLG, 0)

do i=1, nfixed
arglis(2*i - 1) = fixed(i)
arglis(2*i) = fixed(i) + nplanes

end do

call mnexcm(fcn, "fix", arglis, 2*nfixed, IERFLG, 0)

arglis(1) = up
call mnexcm(fcn, "set err", arglis, 1, IERFLG, 0)

call mnexcm(fcn, "mig", arglis, 0, IERFLG, 0)

! this doesn’t seem to work, and the parabolic errors are good enough
! call mnexcm(fcn, "mino", arglis, 0, IERFLG, 0)
call print_args

end subroutine minimization

program harp_align
use common_params

integer, dimension(:, :, :, :), allocatable :: hit_set

real*8 d2, yy
integer input, iflag, i, j, k

real*8 xval(2*nplanes), fval, dtheta(nplanes), d(nplanes)

!----------------------
print *, "Random seed input:"
read *, input
print *, input

! we need the following random numbers:
! 4*max_ndata*nconfs to simulate beams
! 2*nplanes to simulate deviations
! 2*nplanes for initial deviations in the minimization stage
! 2*nconfs for initial deviations of the fixed planes
call rmarin(input, 4*max_ndata*nconfs + 4*nplanes + 2*nconfs, 0)

32

call initialize_params

allocate(hit_set(nplanes, 1+maxhpl, max_ndata, nconfs))

! call sim_set(hit_set, d2)
call get_hits(hit_set)

call get_delta_set(hit_set)
deallocate(hit_set)

call minimization

print *, "sim:", d2

end program harp_align

33

