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Abstract

Multi-wire proportional chambers (MWPCs) are commonlydigehigh en-
ergy physics, for the tracking of charged patrticles. Theall/&acking resolution
is determined by the separation of anode wires in each chambe

In order to perform accurate beam tracking, the positiodsvidual wires
in MWPCs must be known to a precision preferably higher thanahamber
resolution. This can be difficult as the wires are confineiashe chambers.
The present work with the HARP experiment at CERN used chesnlveose
wire positions could only be measured to about 0.5 mm of dhteffset, and a
few milliradians of rotation about the beam axis.

A significantly higher precision is obtained via softwarggament, which
finds the positions of chambers producing the best fit of trerbérajectory.
However, a fundamental theorem asserts that at least twol#ra must have
known positions, in order to obtain unique values for thatjoss of the others.

A new method has been proposed by P. Gorbounov of the HARRogrou
whereby only one chamber needs to be transversely fixed. \d4tarare recorded
with this chamber in different longitudinal positions, thffect of multiple fixed
chambers can be achieved: the other chambers’ lateralgyssinust be consis-
tent with all configurations of the reference chamber siemdbusly.

The method has now been implemented by the author. The jplértas been
verified by simulations included in the software. It has besed with the HARP
experiment to align four crossed-wire chambers to a p@tisf order 1m in
offset and 1 mrad in rotation, when data from about 400,0@htsvwere used.
The procedure can be readily generalized for any situatioerg/the alignment
of tracking equipment is required.
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1 Introduction

1.1 HARP hadron production experiment

The HARP experiment utilizes the T9 beam from the Proton Bxotcon at CERN.
The protons in the beam have a tightly defined momentum, wdachbe adjusted in
the range between about 2 and &bV /c. The beam is directed towards a nuclear
target which is one of a choice of metals, and the producednsieey hadrons are
investigated.

The principal goals of the experiment are related to neaitphysics. The yield
of pions produced with protons of different momenta, anéed#int targets, is one of
the main topics of interest. That information will be of imgance for future designs
of proton-driven neutrino factories. These in turn can bedusn conjunction with
neutrino detection facilities, to investigate neutrinosses.

Multi-wire proportional chambers (MWPCSs) are used for theuamate determina-
tion of the incoming beam trajectories. This informatiomigized in monitoring the
beam envelope, which is important feedback for controlthnggbeam characteristics.
In addition, it is used to find the proportion of particlesttreach the target. Moreover,
tracking the individual particles will provide the positi®and directions at which they
hit the target.

1.2 Operation of MWPCs

MWPCs are now commonly used for the tracking of charged gdasti A brief expla-
nation of a single proportional chamber is provided to exytlaeir operation [1].

The chamber consists of a negative (cathode) sheath sdingua positive one
(anode), the two forming a capacitor in effect. The spaceetwben is filled with
a noble gas or some other suitable gas. As the charged pagtitérs the gas, the
latter will be ionized. Electrons will then drift towardsetlpositive anode wire, and
the acceleration provided by the electric field of the capagnay induce secondary
ionization. Eventually electrons and ions are depositetheranode and cathode re-
spectively. A detectable signal is produced, as the patkotithe capacitor changes
with its charge. In the so-called proportional mode, theéalgvill be proportional to
dE /dz of the particle.

An invention by Charpak (1968, Nobel prize in 1992), the MWé&shieves a rea-
sonably accurate method of tracking by combining an arrgyabortional chambers
into one unit. Itis usually a grid of parallel anode wiresdaithed between two cath-
ode planes. From the field line pattern (figure 1) it can be dedthat the wires define
independent measuring units: if the particle only passesitih the field lines from
one wire, a signal will only be induced into that wire. Theref no separate chambers
are required and the wires can be spaced by e.g. 1 mm, as gxflesiment, which is
a satisfactory resolution in many cases.
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Figure 1. Basic arrangement of a MWPC (Adapted from [1])

For a wire spacing, the standard deviation of the particle position (distgoae
allel to the wires, in the wire plane) is easily computed:
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It is relatively common to get signals from two adjacent wiesen when it is believed
that only a single particle passed through the wire planetundty, it is possible
that the particle passes through the border between adjaterizones because its
trajectory is angled relative to the normal to the planehla éxperiment, these events
are accepted. Events with a higher number of signals (hétsplane, of those pairs of
signals not from adjacent wires, are rejected by the soéwagger.

There exists another mechanism by which multiple hits penglcan be detected.
The products of ionization may enter the field of an adjacerg.\Whese can be diffi-
cult to distinguish between the above events, particulartitis experiment where the
signal strengths are not recorded due to the limitationstd grocessing. However, it
is believed that such cases are sufficiently rare to be iifgignt.

1.3 Beam tracking

It is often the case that MWPCs are arranged in pairs with tine sets orthogonal
to each other. This could be used to approximateztheoordinates of the particle
trajectory in a plane. Of course the two sets of wires canagifysically in the same
plane, but the approximation can be improved arbitrarilaying a sufficiently small
z-separation. In HARP a separation of about 10 mm is achieydthibbing a common
cathode plane for both sets of wires. That pair is then in dasingle chamber and
called a MWPC as well. There are in total four such chambeHARP, as illustrated
in figure 2.
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Figure 2: Layout of HARP MWPCs. The distances are in milliragt and measured
from the centres of chambers. (Adapted from [2])

However, it is not necessary to make the approximation witlplanes. The tra-
jectory of the particle can be reconstructed by fitting aightdine, or perhaps a more
general curve, to the pattern of wires that are hit. This isedeia a least squares
method where the residuals are the squared distances lpetinewvires and the tra-
jectory. Nevertheless, it is more convenient from the pofntiew of construction, to
arrange the wire planes in pairs which share a cathode plane.

There is inevitably a level of interaction between the gétand the MWPC, hence
the straight line trajectory is only an approximation. It ®wever, an enormously
complex task to compute the precise interactions and malistraight-line picture.
Moreover, the high momentum of the particle (around 2GeX/HARP) suggests
that the deviations from straight line are negligible, €sqléy considering the overall
precision of tracking.

While the precision is dependent en= d/+/12 for MWPCs with a wire spacing
of d, it is improved with an increasing number of chambers.

2 Theoretical background

2.1 Basic principle of alignment

Alignment is the process of determining the positionsy( z and rotations) of the

MWPCs. Basically it is done by direct mechanical measurasydiut they can only

performed to within about 0.5 mm. The problems arise mairdynfthe construction

of MWPCs. The wires are not mechanically accessible fromatlside, so their

positions can only be approximated. Moreover, the relafg@paration and angle of
rotation) between the two wire planes in a chamber is not knexactly. Therefore it

is essential to treat the two sets of wires as independent.



More precise alignment can be performed as follows. Firstaggume certain
positions and rotations (collectively called 'alignmeat@meters’) for all wire planes.
Then for each event, trajectory fitting is performed, basedhese parameters. The
total sum of normalized squared residual$, is computed to indicate the overall
goodness of fit. The process is repeated using slightlyrdiftealignment parameters.
The actual alignment parameters are found wheis at its minimum (best fit) value.

In practice,y? is treated as a function of the alignment parameters, wihddeam
data are constant parameters. To minimize that functiortegiaus calculation, so in
practice a specialized software is used. At CERN the comrhoite has been to use
the MINUIT [3] package.

2.2 A fundamental problem and its solution

It is easy to see that? is unchanged if the entire system of MWPCs is moved or
rotated. The beam trajectories, which are computed on tkig béasignal wires, will

be shifted accordingly. The trivial answer to this probleno have one chamber fixed
with known coordinates. The alignment parameters of otlergs are then computed
relative to that. Nevertheless, unique parameters camnfatmd simply by fixing one
plane. Translations or rotations linearznwvould still leave the parameters undefined,
as depicted in figure 3. This was well exhibited by the simaret used to test the
program.

Thus more than one of the planes are to be fixed. Moreover, asvoe plane
is insensitive to the dimension along the wires, two or mdaa@s must be fixed in
each of two dimensions. In the usual arrangement with eachiPkg\dbnsisting of two
crossed wire planes, two fixed chambers could be used tovacthies.

The chambers may have non-zero lateral and rotational titmvsa as long as they
are known. But this is somewhat against the original argunietause the calculation
of the alignment parameters would be unnecessary if we coabisure them directly.

A solution suggested by P. Gorbounov has been to use one ehnafmid in the
lateral and rotational senses, in different longitudinasipons. As the MWPCs are
mounted on metal rails, this can be done to a high precisioenkhen the rails are
not exactly parallel to the-axis, the deviation is easy to measure when compared to
measuring the actual positions of the wires.

The above procedure of alignment is then performed withcfetata, with the one
chamber in different-positions.y? is the total sum of normalized squared residuals
over all configurations, with the same alignment paramaises for the non-fixed
planes in all cases. Naturally this introduces further clacapons to the method,
but with well designed software utilizing sufficient comimgt power, the desired goal
remains accessible.
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Figure 3: A simplified analogy of the fundamental problem.eHits on each plane
are unchanged. These are only two possible beam trajestedgeally well fitted to
the hits.



3 Computational approach

3.1 Mathematical description

The following notation has been adapted from P. Gorbounarésious work on the
subject [2]. Each wire in théh wire plane is represented by the equations

zZ =z
—zsinf; + ycosb; + Aj(w) +6; =0

wheref); is the angle of the wire w.r.t. the-axis andA, the intended offset from the
z-axis, normal to the wire direction. The latter is calcuthteom the wire numbew
via A; = s;(C; — w) using constants;, C;. Also§; = 6,; + 66;. Thusé; anddb; are
the deviations from ideal, or alignment parameters.

Chamber| plane| 6,/degrees| s/mm | ¢ z/mm
1 1 0 +1 | 485]3930+5
2 90 +1 48.5 | 3930 -5
4 3 -135 —4 | 245 3512+5
4 135 —4 | 245 3512-5
2 5 -90 —1 | 48.5] 3095+ 5
6 0 +1 48.5 | 3095 — 5
3 7 -90 -1 | 4851163 +5
8 0 +1 48.5| 1163 -5

Table 1: The current parameters of the MWPCs in HARP (ad&pbed [2])

It is approximated that the wire planes are normal toztlais and any tilts in this
sense can be neglected. Naturally it would be possible tadedhese deviations into
the alignment procedure as well. However, their effect isveted to be considerably
smaller than that of the above parametgranddd;.

3.2 Choice of language

The author was initially familiar with FORTRAN 90. It alsoesaed the most appro-
priate language for numerical applications of the requiradire. On one hand, this is
due to the intrinsic functions and the powerful syntax eay.airray handling. On the
other hand, it was expected that a wealth of number-crugchlgorithms would be
readily available as recompiled libraries. Probably thestmmportant of these is the
MINUIT function minimization package.

At CERN it first appeared that only the GNU compiler for FORTRA7, g77,
would be available. Most of the code for HARP beam analysis widtten in F77, as
were the libraries. Work on this program was started in F7i€lwivas a disappoint-
ment, because this version of FORTRAN lacks many of the syictd features that
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make F90 a powerful physics language. There were also gifiatities in dynam-
ical allocation of memory. Other languages such as C wersidered at this point,
however a PGI F90 compiler was eventually found and it evepstied g77 libraries.

3.3 Optimizations

The function that is to be minimized performs a large numbb@aéculations on each
call. In this experiment, there are six sets of data: thréerent positions of one wire
chamber, and two types of beams in the sense of focusing. $&dfas initially had
100,000 events, and after removing ambiguous events vidtaase trigger, about
70,000. Therefore the function performs about 400,000 kgsare fits in producing
the y2-value. In the minimization stage, hundreds or thousandstion calls are
executed. Therefore it is crucial to optimize the perforogaaf the program by any
means necessary, while not compromising numerical acgurac

FORTRAN 90 has a powerful syntax with 'array expressions trese were used
as widely as possible, both to make the source code simptetcaimcrease perfor-
mance. The program was developed on Linux on a dual Pentiuwotkstation, so
the compiler could utilize the parallelity of the source edny delegating work to both
processors. In addition, the vector instructions (SSEeveecessible with the com-
piler to provide further optimization.

As the rotational deviations would be something in the oddenilliradians, it was
expected that differential formulae should be used to cdaehe sines and cosines of
angles. They would provide sufficient precision and theyenszlieved to be faster.
However, using the real trigonometric functions turnedsiatver only by a few per-
cent, and it was decided to use them instead for better jpvacifhis was a good sign
proving that there actually is a section called 'math copssor’ in the CPU, providing
assembler instructions of the trigonometric functions.

It can be argued that there are many obvious optimizatiobe tione. One reason
is, of course, that the program needs to be used in a produetieironment. The
code cannot then be optimized indefinitely, and there ar@mgportant bug-fixes and
integrity checks to be made. Less obvious is the fact ther abme parallelization is
made to fully employ both processors of the PC, any furthealfgization is in vain
because all of the computing power is already in use. These lbe@en many decisions,
thus, to leave the code with ordinadp loops instead of array expressions even if the
latter would have been syntactically possible.

3.4 Simulations

From the beginnings of the project it was clear that a sedtoproducing simulated
data was to be included. Generally, in projects of this ksithulations are a useful
'tool’ for debugging the code. Naturally this method re@gsithat the simulation part
itself is sufficiently free of bugs.
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On the other hand, the simulated data generation involvesntrerses of many
routines of the actual program. For example, the conversi@ositional coordinates
to wire patterns is exactly the opposite of what is done byittieg routine. Therefore,
a bug in either is only left unnoticed if exactly the same akstis made in both. The
probability for this is believed to be significantly loweiththat for a single bug.

Another use for simulations is perhaps of even greater itapoe. The method
for circumventing the fundamental problem of alignment has been used before,
as far as the HARP group is aware. Simulated data with knowratiens from the
ideal positions provides a rigorous way of testing the pdoce. The wire patterns
generated this way are fed into the minimization routinel e resulting alignment
parameters can easily be compared to the actual deviations.

3.5 Debugging

The use of simulations as debugging aids has already beetomesh However, they
are generally the more useful, the higher level of code iagpanalyzed. For more
obscure details and syntactical mistakes, different agres are required.

An obvious starting point for debugging is the compilerlits@ith the error mes-
sages it produces, along with the relevant line in the sofilece However, there are
invariably more subtle mistakes that do not interrupt thengitation, and are mani-
fested as runtime errors. In these cases, it has proveddtis# to print the values of
some variables at certain critical points of the executfdrthe very least, these would
indicate the point in the code where the program crashesaksodproduce specific
information on the state of the program.

A particular problem with this project has been the use ofaldes of different
precision. Most of the library subroutines use 64-bit pgeei and this was also chosen
as the default precision for most variables. However, soitieedibrary routines were
only available as 32-bit versions. This was not a great problas FORTRAN 90
handles different types intelligently: for example the €od

real *8 :: pi = 3.141592653589793
real *4 x

X = 2*pi

is valid FORTRAN 90 and the variableis assigned the correct value.

The trouble arises, for example, when@al * 8 variable is passed to a subroutine
which usegs eal * 4 variables only. The library subroutine receives a strin§2bits
and treats them as a 32-bit real variable.

Printing values of intermediate variables is good pradties, because unexpected
values can be quickly recognized. This is most obvious whervériables are known
to be positive only, and the printed values come out negative

It should also be noted that 32-bit precision would be adegifiave only judged
by the uncertainties in the final results. Usingal * 4 variables only would certainly
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improve the execution time. However, the choice of 64-b#cgsion is to minimize
rounding errors in the many intermediate stages. With tigelaumber of both the
data, and the number of function calls, the cumulative emaight be significant, had
we only used 32 bits for real variables.

4 Implementation

4.1 General layout

The program makes extensive use of tielul e structure of FORTRAN 90. It pro-
vides namespaces that can be accomplished ewtimon blocks in F77, but with
more flexibility. A particular improvement over modules lieetability to use dynami-
cally allocatable arrays.

Many parameters and even the event data are passed on vitesdéiustly, this is
essential for memory management because one prefers nakearcopy of the data
array with about 1.4 milliom eal * 8 variables. On a PC with 256 MB of RAM, only
one copy could be used without having to resort to virtudd-giwapping memory. This
alternative was proved very slow by running two copies offtagram simultaneously.

Moreover, the function to be minimized would have a very cboaped interface if
every parameter was to be included as its arguments. ltdheuhoticed that in terms
of minimization, the event data are in fact constant paramsef he only variables then
are the sixteen alignment parametegd( i ) ) andéd; (dt het a(i ) ) withi =1...8.
As discussed before, some of these will be fixed, but this iderad a higher level to
keep the program as general and modular as possible.

Another positive consequence of thedul e structures is that the program can
be thoroughly divided into subroutines to increase theitglaand flexilibity of the
code. Otherwise the subroutines could become complicatedalthe large number
of arguments, which might compromise the intended clanty maintainability.

4.2 Data structures

The structure for containing the wire hit patterns was aelhftom related programs
by P. Gorbounov. For one event, it is an integer array of rankith the contents
described by the following comment:

I hit(i, 1) = no. of hits per i’th plane
I hit(i, j+1) = wire nunber of j'th hit

As mentioned above, a 'good’ event can have a maximum of twgogar plane, and
these must be adjacent. Therefgre< 2. For the entire set of data, further indices
are introduced to denote the event number in a configuradind,the configuration
number.
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For the purpose of least squares fitting in the minimizatarnine, the hit patterns
are converted into spatial coordinates. For a single evenisg a rank 2 array, named
thus to separate it from the lowercase delta:

big d(i,2) = plane number

This structure was chosen because of the fitting routinggtban be 0, 1 or 2 hits
per plane, but there is exactly one linear equation per ea¢h While the conversion
from the hit pattern is slightly complicated, it is better fbe overall performance to
have the fitting stage as fast as possible. As above, twosfutidices are introduced
to account for the entire data set. However, this means #udtt 'slice’ ofbi g_d(i ,

] ) has a fixed dimension. Although one can count the non-zero plane nusnifer
each event, it has proved faster to store the number of hiteyaat in the dedicated
arraynum_hi ts.

As the solution to the fundamental alignment problem rexgjithere are sets of
data taken with different positions. Although thez-positions have several values
only for one chamber i.e. two planes, it has been decidedlfmitycto derive allz;
from a rank two array:

do j=1, nconfs
z = zconf(:, j)

I' (sinmulation or fitting over all data in the conf.)

end do

4.3 Simulation

The subroutinesi mul at i on is used to generate a random event. It starts by two
random points, each located on one of the extreme wire plditey can be anywhere
on the rectangular planes instead of being confined to theswiParameters for the
straight line joining them are computed. They are used totfirdchit wire numbers on
each wire plane, by finding the wire closest to the beam lineamh: = z; plane.

To produce a realistically large set of data, the wrappetimegi m _set first pro-
duces random values for the deviationandd; for each plané. With these as a basis,
si mul at i on is then run in a loop through a number of times to generate erum
of events in each configuration. The relevant set;af used for each configuration,
as described in section 4.2.

A library subroutine [4] is used to generate the random nusbEINIX time is
chosen as the random seed, as it is readily available andepaating.
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4.4  Function fitting

The subroutindbeam fi t is used as a wrapper around theS [5] library routine,
which is a general least squares fitting algorithm. The tedglin this case are the
normalized distances between the beam trajectory and ties with induced signals.
TLS performs the minimization of the sum of the squared resgjualproduce the pa-
rameters of the beam trajectory (straight line). Howeres,most important outcome
for the alignment is the minimized sum of squared residuals.

With TLS one has the choice to solve several systems of linear eggaioconce
[5]. It is possible that this would increase performanceasatbly, when compared to
looping over individual processes. However, this featunagl@d not be used because in
the real data, the number of hits per event is not fixed. As baaorresponds to one
equation in the trajectory fitting routine, each event wal/a to be treated separately.

TheM NUI T package is used to minimize the total sum of squared residyal
varying the alignment parameters. The function to be mipgaliis coded as the sub-
routineFCN with a definite kind of interface as required By NUI T. The input argu-
ments ofFCN are in an array of 16 element&d; andd, with ; = 1...8. InsideFCN,
beam fit is called in a loop over all configurations, and all eventsanteconfig-
uration. For each configuration, the correct set,ob used. In addition, the correct
deviations of the fixed planes are set per configuration.

M NUI T requires initial guess values for the alignment paraméterder to know
where to start the search. It should be stressed that theesélzer all zero, or randomly
chosen. This is important when testing the algorithm withidated data: the mini-
mization routine does not know the real values of alignmenameters. Therefore the
results presented in section 5.2 reflect the integrity ofti@mization routine. This
is essential in the case of real data when the actual dengatiannot be known.

5 Results and discussion

5.1 Note on uncertainties

With MINUIT, the default scheme for determining the paraemedrrors is based on
standard chi-squared methods. The minimized valug?ois defined to have unit

uncertainty, from which the corresponding uncertaintrealignment parameters are
derived.

5.2 \Verification of the principle by simulations

Initially, simulations were made with only one or zero fixdtambers. As was ex-
pected, the resulting alignment parameters had no reltatithre simulated deviations.
They were not even consistent, in the sense that the samedsatiations would pro-

duce different alignment parameters on different runs efrthnimization program.

Based on this, the author was convinced of the severity diuthgamental problem.
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With the scheme of one chamber in three positions in operatiee outcomes
of simulations suddenly changed into something consistém example of a full-
sized simulation/minimization run is provided below. Téere six configurations
with 76,000 events each, with planes 3, 4, 7 and 8 fixed.

At this time there was no data available from the chamber pitimes 3 and 4
so it has been omitted in the simulation as well. Planes 7 aak 8n the chamber
with different z-positions, and different deviations in each case, so @enment
parameters are not computed.

It can be seen from the above figures, that the minimizatisolt® agree with
the initial deviations within uncertainty limits. Moreavehe final value ofy? is ap-
proximately half of the initial, even though the latter issbd on the ’ideal’ hits from
simulated trajectories, showing another aspect of theessoof the minimization.

5.3 Results from the real data

Test runs were carried out using only a part of the data. Thednmonsistency between
the alignment results from different sets of data indicat&gther level of success for
the method. The set of alignment parameters obtained isdadn table 3; the data
from planes 3 and 4 are included here.

6 Conclusions

A new method for the alignment of multi-wire proportionakehbers, proposed by P.
Gorbounov, has been implemented and tested by the autherinigrovement over
conventional alignment procedures is in that the one chathieis laterally fixed, is
employed in a number of longitudinal positions. The ovegétct is the same as that
achieved with multiple fixed chambers, with the advantagéttine lateral coordinates
need to be known only for one chamber.

Both simulation runs, and tests on actual data, have verifiatithe method is
successful in solving the fundamental problem of alignménhas eventually been
used with the HARP experiment to align four crossed-wirentbers. The precision
obtained with about 400,000 events is of ordexrh in lateral offset and 1 mrad in
rotation.
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dt het a/ r ad

d
9

0

0
0

. 0818520E- 03
. 8763724E-03
. 2760791E- 03
. 9576663E- 03
. 8447525E- 03
. 4293168E- 03
. 0000000E+00
. 0000000E+00

el ta/ mm
. 0514682E- 02
2.900985
2.436198
. 5246968
1.233972

-0. 7262853

. 0000000E+00
. 0000000E+00
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+/ -

OO WNRFRRF WM

. 2462247E- 04
. 4756484E- 04
. 7/678936E- 04
. 6403430E- 04
. 9622624E- 04
. 6899984E- 04
. 0000000E+00
. 0000000E+00

+/ -

OO FRLPDNMNWDNOOLER

. 8791633E- 03
. 3912272E- 03
. 2991272E-03
. 5192200E- 03
. 0006932E- 03
. 1148308E- 03
. 0000000E+00
. 0000000E+00

Table 3: Alignment parameters from real data
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APPENDIX

A Program source

I HARP MAPC Al i gnment by Risto-Antti Paju <risto.a.paju@ki.fi> 2001
! with guidance frommny supervisors at CERN. Al an Grant, Petr Gorbounov

I Also thanks to Frederick Janes of CERN for help on MNU T
! Notes:
! subroutine get _hits (reading data files) adapted fromcode by P. G

nodul e common_par ans
inmplicit none

I #pl anes, #wires/plane, max #beans/config
i nteger, paraneter :: nplanes = 8, max_ndata = 76000

I 3 different z-positions of one chanber
I * 2 types of beamfor each
integer, paraneter :: nconfs = 6

i nt eger ndat a(nconfs)

I max #hits/plane

integer, paraneter :: maxhpl = 2

i nteger, parameter :: naxhits = maxhpl * npl anes
real *8, di mension(nplanes) :: z

real *8, di mensi on(nplanes, nconfs) :: zconf

| start & end areas at z(1) and z(8) are squares:
real *8, paraneter :: width = 96 ! of planes in mm

real *8, paraneter :: pi = 3.14159265358979323846

I worst fraction of d**2 to discard from sum(d**2)

real *8, paraneter :: discard = 0.02

real *8, dinmension(maxhits, 2, max_ndata, nconfs) :: delta_ set

i nteger, dimension(max_ndata, nconfs) :: numhits ! total per beam
real *8, dinension(nplanes) :: iangle, norm
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end nodul e conmon_par ans

nodul e data_files
use conmon_par ans

character(len=11) :: file_prefix = "data/align."
character(l en=4), dinmension(nconfs) :: file nos = (/"3897", "3900",

end nodul e data files

nodul e conver si on_par ans
use conmon_par ans

real *8, paraneter, dinension(nplanes) :: &

&s =(/1, 1, 4, 4, 1, 1, 1, 1/), &

& ¢ = (/48.5, 48.5, 24.5, 24.5, 48.5, 48.5, 48.5, 48.5/)
| s is also used for the nornalization constants

end nodul e conver si on_par ans

nodul e ni ni m par ans
use conmon_par ans
I step, lint for changing dtheta (radians) & d (mm
I zero limt = unbounded
' 1 degree = 0.017 radi ans
real *8 :: dtstep = 0.005, dtlimt =0, dstep = 0.1, dlimit =0

I +/- limts for randomy chosen init val ues
real *8 :: dtinit =0, dinit =0
I ditto for sinulated deviations

real*8 :: dt_slimt = 0.2, dslimt =7
i nteger, paraneter :: nfixed = 2
i nteger, dinmension(nfixed) :: fixed = (/7, 8/)

I the lateral position of chanmber 3 varies with z.. conplication++
real *8, dinension(nplanes, nconfs) :: dt_fixed, d_fixed

character*10 dt nane(npl anes), dnane(npl anes)

i nteger narg, npari, nparx, istat
integer ierflg, ivarbl

real *8 xval (2*npl anes), error, fmn, fedm
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I' change of mn. function value that determ nes param errors
real*8 :: up = 1! FVAL is sumof norm squared residuals

end nodul e nmi ni m parans

subroutine initialize_parans
use mnimparanms ! includes comopn_parans
use conversi on_par amns

real *4, dinension(2*nconfs) :: ranx

I nornalization constants for distances
I = grid separations in mm
norm = abs(s) / dsqrt(12.)

I ideal, intended angles of wires wr.t. the x-axis
iangle(l) =0

iangle(2) =pi |/ 2

iangle(3) = -3 * pi / 4

iangle(4) =3 * pi |/ 4

iangle(5) = -pi / 2

|

i

|

angle(6) =0

angle(7) = -pi / 2

angle(8) =0

! z-positions of wire planes

zconf (:, 1) = (/3934+5, 3934-5, 3512+5, 3512-5, 3095+5, 3095-5, 1270+5, 127C
zconf(:, 2) = zconf(:, 1)

zconf(:, 3) = zconf(:, 1)

zconf(7:8, 2) = zconf(7:8, 1) + 553.5
zconf (7:8, 3) zconf (7:8, 2) + 552

zconf(:, 4:6) zconf (:, 1:3)

| later, sone of these will be non-zero

dt_fixed =0

d_fixed =0

d fixed(7, 2) =-0.3"! flipped sign due to positive s
d fixed(7, 3) =-0.6

d_fixed(8, 2) = 0.22

d fixed(8, 3) = 0.5
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d_fixed(:, 4:6) = d_fixed(:, 1:3)

numhits =0
ndata = max_ndat a
delta set = 0

end subroutine initialize_parans

subroutine get _delta(hit, big d, nhits)
use conversi on_parans
integer i, j, k

I hit(i, 1) = no. of hits per i’th plane
' hit(i, j+1) = the wire nunmber of j'th hit
integer, intent(in), dinmension(nplanes, 1+maxhpl)

real *8, intent(out), dinension(maxhits, 2) :: big_d

k =1
do i =1, nplanes
do j=2, hit(i, 1)+1
big d(k, 1) = s(i)*(c(i) - hit(i, j))

big d(k, 2) = dble(i)
k =k +1
enddo

enddo
nhits = sun(hit(:, 1))
end subroutine get _delta

subroutine get _hits(hit_set)
use data_files

integer i, j, k
i nteger*2 ibuf(9)
i nteger tenp(8)

i nteger, intent(out), dinension(nplanes, 1+maxhpl,
external get_hits

hit _set =0

do k=1, nconfs
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open(l, file=trimfile prefix)//file_nos(k), status="old", form="unformat
temp = 0O
do i =1, nmax_ndata

read(1, end=999) i buf

t enp(1) =i buf (2)
tenp(2) =i buf (3)

t enp( 3) =i buf (8)
t enp(4) =i buf (9)

t enp(5) =i buf (4)
t enp( 6) =i buf (5)
t enp(7) =i buf (6)
t enp( 8) =i buf (7)

do j =1, npl anes

if (tenp(j) .gt. 0) hit_set(j, 1, i, k) =1
hit_set(j, 2, i, k) = nod(tenp(j), 100)
hit_set(j, 3, i, k) =tenp(j) / 100
if (hit_set(j, 3, i, k) .gt. 0) hit_set(j, 1, i, k) =2
! bug hunt (trigger)
if (hit_set(j, 3, i, k) .gt. 0) then
if (abs(hit_set(j, 2, i, k) - hit_set(j, 3, i, k)) .gt. 1) then
print *, "TRIG ERROR. ", j, k, hit_set(j, 2, i, k), hit_set(j,
end if
end if
enddo
! bug hunt
! print *, i, tenp(3:4)
end do
cl ose(1)
999 ndata(k) =i - 1
end do

end subroutine get_hits

subroutine get delta set (hit_set)
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use common_par ans

external get _delta, trigger

real *8, dimension(nmaxhits, 2) :: big_d
i nteger, intent(in), dinension(nplanes, l+maxhpl, max_ndata, nconfs) :: hit_
i nteger hit(nplanes, 1+maxhpl), nhits, i, j, k

delta set = 0
do j =1, nconfs

k =0
do i=1, ndata(j)
hit = hit_set(:, @, i, j)
call get _delta(hit, big_d, nhits)
k =k +1
delta set(:, :, k, j) = big d ! passed on.
num hits(k, j) = nhits ! ..via nodul e conmbn_par ans
enddo
end do

end subroutine get_delta_set

subroutine beamfit(a, b, d, big d, fit_parans, nhits)
I TLS assunes abnornmal convention of row col unm order!!!
' and uses 32-bit precision !!!

use common_par ans

integer mL,, m |, ier, n

COMMON /TLSDIM ni, m n, |, ier

real *8, intent(in), dimension(nplanes) :: a, b, d
real *8, dinmension(nmaxhits, 2), intent(in) :: big_ d
integer, intent(in) :: nhits

real *8, dimension(5), intent(out) :: fit_parans

I note the precision

real *4, dinmension(4, maxhits) :: dm
real *4, dinension(maxhits) :: rhs
real *4 eps, |p(4), aux(8)

i nteger i, plane
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i nteger, dinmension(4) :: ipiv

n
I
eps

I
N = 5h

0

do i=1, nhits
pl ane = nint(big d(i, 2))

rhs(i) = -(big_d(i, 1) + d(plane)) / norn(pl ane)
dm(1, i) = a(plane)*z(plane) / norm(plane)
dm(2, i) = a(plane) / norm(pl ane)
dm(3, i) = b(plane)*z(plane) / norm(pl ane)
dm(4, i) = b(plane) / normplane)
enddo

m= nhits ! # |linear equations
call TLS(dm(:, 1:m, rhs(1l:m, AUX, IPIV, EPS, |p)
fit _params(1:4) = 1p
fit_params(5) = aux(1)

end subroutine beamfit

subroutine sinmulation (hit, fit_parans, dtheta, d)
I Sinmulation with given deviations fromideal angles.
I Only one hit per plane.

use conversi on_par ams

external get _delta, get _d2

real *8, dinmension(nplanes) :: a, b, x, vy

real *8, di mension(nplanes), intent(in) :: dtheta, d

real *8, dimension(maxhits, 2) :: big d, const

real *8, dinmension(5), intent(out) :: fit_parans

i nteger, dinension(nplanes, l1+maxhpl), intent(out) :: hit

i nteger, dimension(nplanes) :: w! note this is a |local variable

real *4, dimension(nplanes):: ranx ! note the precision

integer plane, i, j, nhits
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call ranmar(ranx, 4)

x(1) = (ranx(1) - 0.5)*width

x(8) = (ranx(2) - 0.5 *width

y(1l) = (ranx(3) - 0.5)*width

y(8) = (ranx(4) - 0.5)*width

! the line has the paranetric equation
! X = ax*z + bx

! y = ay*z + by

ax = (x(1) - x(8)) 7 (z(1) - z(8))
ay = (y(1) - y(8)) / (z(1) - z(8))
bx = x(1) - ax*z(1)

by =y(1) - ay*z(1)

fit_paranms(l) = ax

fit_params(2) = bx

fit_paranms(3) = ay

fit_paranms(4) = by

I init #pl anes
big_d(1l:nplanes, 2) = (/(dble(i), i=1, nplanes)/)

bi g_d(npl anes+1: maxhits, 2) =0

X = ax*z + bx

y = ay*z + by

I Differential fornmulae would be _slightly_ faster, but we want precision he
a = -sin(iangle + dtheta)

b = cos(iangle + dtheta)

big _d(1l:nplanes, 1) = - (a*x + b*y + d)

! convert to actual wire nunbers (inverse of get_delta!-)
w = nint(c - (big_d(1:nplanes, 1) / s))

hit =0

hit(1l:nplanes, 1) =1

hit(1: nplanes, 2) = w

I quantize big d for calculation of d**2
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I (and check consistency of get _delta :-)
call get _delta(hit, big d, nhits)
const =0

const (1: npl anes, 1)
const (1: npl anes, 2)

big d(1:nplanes, 1) + d
bi g_d(1: npl anes, 2)

call get_d2(fit_parans, a, b, const, nhits)
end subroutine simulation

subroutine get_d2(fit_parans, a, b, const, nhits)
use conmon_par ans

real *8, dinension(nplanes), intent(in) :: a, b
real *8, dimension(maxhits, 2), intent(in) :: const
real *8 fit_parans(5)

i nteger i, plane

integer, intent(in) :: nhits

fit_parans(5) =0
do i =1, nhits

pl ane = nint(const(i, 2))

fit_params(5) = fit_parans(5) + ((a(plane)*(fit_parans(1l)*z(plane) + fit_
enddo

end subroutine get _d2

subroutine fcn (npar, GRAD, FVAL, XVAL, |FLAG futil)
I to be used with mnuit
use m ni m parans

external beamfit

integer i, j, k
integer, intent(in) :: npar, iflag

real *8 fit_parans(5)

real *8, di mension(2*nplanes), intent(in) :: xva
real *8, intent(out) :: fva
real *8, intent(out), dinension(npar) :: grad
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real *8, dimension(nplanes) :: dtheta, d, a, b
real *4 d2_set(max_ndata) ! for flpsor

dt heta = xval (1: npl anes)
d = xval (npl anes+1: 2*npl anes)

fval = 0
do j =1, nconfs
z = zconf(:, j)

I (fixed is used as an array subscript :-)
dtheta(fixed) = dt_fixed(fixed, j)
d(fixed) = d_fixed(fixed, j)

I We could use differential fornul ae, but the true ones are not that sl ov
a = -sin(iangle + dtheta)
b

= cos(iangle + dtheta)

do i=1, ndata(j)

call beamfit(a, b, d, delta set(:, :, i, j), fit_parans, num hits(i
d2_set(i) = fit_parans(5)
enddo

I discard the worst fraction

call flpsor(d2 set, ndata(j))

kK = nint((1. - discard) * ndata(j))

fval = fval + sum(d2_set(1:k))
enddo

end subroutine fcn

subroutine simset(hit_set, d2)
use m ni m par ans

external sinulation

integer i, j, k

i nteger, intent(out), dinension(nplanes, 1l+maxhpl, nmax_ndata, nconfs) :: hit
real *8 fit_parans(5)

i nt eger, dinension(nplanes, 1+maxhpl) :: hit

real *8, intent(out) :: d2

real *8 dtenp
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real *8, di mension(nplanes) :: dtheta, d
real *4 ranx(2*npl anes) ! note the precision

print *, "lateral deviations of planes:"
call ranmar(ranx, nfixed*nconfs)
do i =1, nfixed
do j=1, nconfs
d fixed(fixed(i), j) = 20.*(ranx((i-1)*nconfs+j)-0.5)
print *, "plane/config/dev:", fixed(i), j, real(d_fixed(fixed(i), j))
end do
end do
print *,

call ranmar(ranx, 2*npl anes)
do i =1, npl anes
dtheta(i) = (ranx(i) - 0.5) * dt_slimt
d(i) = (ranx(i+nplanes) - 0.5) * d_slimt
enddo

d2 = 0

do j =1, nconfs
dtenp = 0
z = zconf(:, j)

I (fixed is used as an array subscript :-)
dtheta(fixed) = dt_fixed(fixed, j)
d(fixed) = d_fixed(fixed, j)

do i =1, max_ndata
call simulation (hit, fit_paranms, dtheta, d)
dtenp = dtenp + fit_parans(5)

hit set(:, :, i, j) = hit
enddo
d2 = d2 + dtenp
enddo

open(1l, file="simdev", status="replace")
wite(l, *) "Sinulated deviations"”

wite(l, *)
wite(1, *) " pl ane dt het a/ r ad"
do i =1, npl anes
wite(l, *) i, real(dtheta(i))
end do
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wite(l, *)
wite(1, *) " pl ane del ta/ mt'
do i =1, npl anes
wite(l, *) i, real (d(i))
end do
cl ose(1)

end subroutine simset

subroutine print_args
use m ni m parans

real *8 bar
real *8, dimension(nplanes) :: dtheta, d, dterr_pb, derr_pb
real *8, dimension(nplanes):: dterr_p, dterr_m derr_p, derr_m

I get arguments and their errors

do i =1, nplanes
call mpout (i, dtnanme(i), dtheta(i), error, -dtlimt, dtlimt, ivarb
call mmpout (i +npl anes, dnanme(i), d(i), error, -dlimt, dlimt, ivarbl
call merrs(i, dterr_p(i), dterr_n(i), dterr_pb(i), bar)
call merrs(i+nplanes, derr_p(i), derr_n(i), derr_pb(i), bar)

enddo

call mstat(fnmin, fedm error, npari, nparx, istat)
open(l, file="align.out", status="replace")

wite(l, *) "Alignnment parameters fromM NU T"
wite(l, *)
wite(1, *) " pl ane dt heta/rad +-"1 +err
do i =1, npl anes
wite(l, *) i, real(dtheta(i)), real (dterr_pb(i))!, real (dterr_p(i)),
enddo
wite(l, *)

wite(l, *) " pl ane delta/ mm + - +err
do i =1, nplanes

)
)

-err

rec

-err

wite(l, *) i, real(d(i)), real (derr_pb(i))!, real (derr_p(i)), real (derr_

enddo

cl ose(1)
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print *,

"mnuit'ed:", real (fmn), "+/-"

end subroutine print_args

subroutine mninization
use m ni m par ans

ext er nal

real *8, di mension(2*npl anes)

fcn, print_args

real *4 ranx(2*npl anes)
real *8, dtl, dl

| ogi cal ,

di mensi on( npl anes)

is_fixed(fixed) = .true.

call ranmar(ranx, 2*npl anes)
ranx = 2*(ranx - 0.5)

arglis =

0

call minit(5, 6, 7)
call mseti ("The alignnent of MAPCs in HARP")

I prepare limts for variables

dt nane =

"dtheta_ "

dname = "d_"

do i =1, npl anes
I these nanes work only if nplanes
dtnane(i)(8:) = achar(48+i)
dnanme(i) (3:) = achar (48+i)

if (is_fixed(i)) then

dtl
dl
el se
dtl
dl
endi f

call mparm(i, dtnanme(i), dtl, dtstep,
call mparn(i +npl anes, dnanme(i), dl

enddo

=0
=0

= dtinit*dbl e(ranx(i))
= di ni t*dbl e(ranx(i +npl anes))
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arglis =0
call mexcn(fcn, "set nog", arglis, 0, |ERFLG 0)

do i =1, nfixed
arglis(2*i - 1) = fixed(i)
arglis(2*i) = fixed(i) + nplanes
end do

call mexcn(fcn, "fix", arglis, 2*nfixed, | ERFLG 0)

arglis(1l) = up

call mexcm(fcn, "set err", arglis, 1, |ERFLG 0)
call mexcn(fcn, "nmig", arglis, 0, |ERFLG 0)

I this doesn’'t seemto work, and the parabolic errors are good enough

I call mexcm(fcn, "mno", arglis, 0, IERFLG 0)
call print_args

end subroutine mnimzation

program harp_align
use conmon_par ans

i nteger, dinmension(:, :, :, :), allocatable :: hit_set

real *8 d2, yy
integer input, iflag, i, j, k

real *8 xval (2*npl anes), fval, dtheta(nplanes), d(nplanes)

print *, "Random seed i nput:"
read *, input
print *, input

I we need the follow ng random nunbers:

I 4*max_ndat a*nconfs to sinul ate beans

I 2*npl anes to sinul ate deviations

I 2*nplanes for initial deviations in the mninization stage

I 2*nconfs for initial deviations of the fixed pl anes

call rmarin(input, 4*nmax_ndata*nconfs + 4*npl anes + 2*nconfs, 0)
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call initialize_parans
al l ocate(hit_set(npl anes, 1+maxhpl, max_ndata, nconfs))

I call simset(hit_set, d2)
call get_hits(hit_set)

call get_delta_set(hit_set)
deal | ocate(hit_set)

call mnimzation
print *, "sim", d2

end program harp_align

33



