
Polymer simulation:
Configurational entropy and mean end-to-end distance

of chains via Monte Carlo method

Risto-Antti Paju, Queens’ College, Cambridge

17th January 2001

Part II Physics, Computational Physics exercise

Except where specific reference is made to the work of others,this work is original and has
not been already submitted either wholly or in part to satisfy any degree requirement at this or
any other University.

Risto A Paju

1

Abstract

The numberw of possible configurations of a polymer molecule ofn monomer units has
been investigated in a cellular cubic grid simulation. If the multi-occupancy of monomers in
one cell were allowed,w would have the value6 � 5

n�2; a Monte Carlo method has been
implemented to test what fraction of these are possible whenmulti-occupancy is forbidden.
In addition, the mean end-to-end distancehr

2

i has been computed.
These procedures have been performed with models wheren ranges from 2 to 50, and the

functional dependence ofw andhr2i onn has been investigated. Theoretical considerations
have suggested the models

w / n

g

e

�n

hr

2

i / n

�

whereg; � and� are constants. The exponents ofn were found to be

g = 0:21 � 0:05

� = 1:36 � 0:03

The value of� obtained here gives substantial support for a theory which predicts� = 4=3.

2

Contents

1 Introduction 4

2 Computational approach 4

3 Implementation 5
3.1 Chain propagation .. . 5
3.2 Constructing complete chains 5
3.3 Repetition .5
3.4 Main program . 6
3.5 Function fitting of the data 6
3.6 Performance optimizations 6

4 Results and discussion 7
4.1 Execution performance 7
4.2 Debugging . 7
4.3 Numerical results .. . 7
4.4 Errors and possible improvements 8

5 Conclusions 11

A Program source 12

3

1 Introduction

The numberw of possible configurations of a polymer molecule is essential for entropy calcu-
lations: S = k

B

lnw. Its dependence on the numbern of monomer units is the subject of this
simulation. In addition, the mean square end-to-end distanceshr2i of the polymer chains are
computed, and their relation ton is investigated.

Theoretical models suggest the functional relations

w = an

g

e

�n

hr

2

i =
n

�

(1)

wherea; g; �;
 and� are constants. Different models have predicted� to be either1:17, 6=5 or
4=3. The simulation aims to determine which of these is closest to correct (within the scope of
this type of simulation).

The question is approached with a simplified cellular model.Each monomer unit will occupy
a cell in a cubic grid. A chain is built up starting from two units, by adding a unit to one of the
adjacent face-sharing cells of the previously added monomer. This would givew = 6 � 5

n�2,
but the actual number must be less because a cell may only be occupied by one unit. A Monte
Carlo method is implemented to find what fraction of the6� 5

n�2 configurations are allowed.
The FORTRAN programming language is used to implement the simulation. NAG routines

are used to extract approximations ofa; g; �;
 and� from the data obtained from the simulation.

2 Computational approach

The most basic starting point would be to build up all possible configurations and count the
number. However, this is not computationally viable. Each polymer begins with a unit at the
origin and another one in an adjacent face-sharing cell. From then on, there are five directions
in which to continue after adding each monomer, so the total number would be6 � 5

n�2. For
n = 50 this would give aw in the order of1034. However, because the multi-occupancy of
cells is forbidden, the actual number is considerably smaller. Nevertheless, it is too large to be
computed in a reasonable time.

A Monte Carlo approach is used to circumvent this problem. A number of polymer chains
are built up randomly, using the random number function to choose one of the five directions at
each stage. When the polymer overlaps with itself, the chainis considered a failure. A certain
fraction of all attempted chains will be successful, and it is expected that this fraction, multiplied
by 6� 5

n�2, gives a reasonable approximation of the number of all possible configurations.
The polymer chains are constructed in a ’space’ of a2n � 2n � 2n matrix whose elements

are initially set to zero. A monomer unit in a cell is marked bysetting that element of the matrix
to one. Failure is indicated, if the system attempts to insert a monomer into a cell with the value
one.

While there are many kinds of possibilities for the failure of building up a chain, depending
on the number of overlaps, it suffices to stop the build-up andreport failure when the first overlap
is encountered. The correct number of successful chains is obtained in any case.

4

The number of trials for a givenn is crucial to the success of the Monte Carlo method.
Clearly, a larger number is required for largern, but the relation between the two numbers is not
obvious. The solution is to process sets of trials, keeping record of the total number of successes
and trials. If, as the result of a further set of trials, the success fraction changes by less than a
certain measure of precision, the number of total trials hasbeen sufficient.

For each successful chain, the value ofr

2, the squared end-to-end distance, is added to a
cumulative sum, and the meanhr2i is easily calculated at the end.

After repeating the above procedures for differentn, we have sets of(n; w; hr2i). Least-
squares methods are then used to compute the constant parameters in eq. 1.

3 Implementation

The explanation of the program below does not attempt to follow the order of procedures in the
code. Rather, it reflects the way in which the program was actually planned and written, from
the simple, core routines to the higher-level wrapper procedures.

The construction of a polymer chain begins from the origin (at the centre of the grid) and
the next unit is always placed at(1; 0; 0). While this is only one of the six possible starting
directions, the symmetry of the problem implies it is a correct choice, as long as thew for all
(even overlapping) polymers is6 � 5

n�2, the number obtained from considering all six starting
directions.

3.1 Propagation of the chain by one unit:subroutine propagate

For the purpose of choosing the allowed direction of propagation, a record is kept of the last
inserted monomer (curpoint) and the one before that (prevpoint).

The coordinates of the six closest neighbour cells ofcurpoint are recorded into a list. The
one of these which coincides withprevpoint is removed from the list. One of the remaining
five points is chosen at random, and it will become the newcurpoint.

3.2 Constructing complete chains:subroutine make_chains

If this new point in the grid has the value zero, a new unit is inserted into it, by setting its value
to one. The construction can then proceed. If an overlap is encountered, failure is reported.

The propagation routine and the above test are repeated until failure, or until n monomers
have been used. In the latter case,r

2 is computed and added to a cumulative
P

r

2, and asuc-
cesses counter is incremented. The construction is repeated bytrials, the number of trials
in a set.

3.3 Repetition:subroutine get_data

Initially, one set of trials is performed. Ado loop is then used to repeat the sets until the required
precision is reached; since thew is proportional to the success fraction, it suffices to compare the

5

fractions afteri andi� 1 sets of trials. Specifically, the condition for sufficient convergence is
�

�

�

�

�

2(fra
tion

new

� fra
tion

old

)

fra
tion

new

+ fra
tion

old

�

�

�

�

�

< pre
ision

During all of the above subroutines, variables such assuccesses, total trials and
P

r

2 are
accumulated. When the convergence limit has been reached,w andhr2i are computed.

3.4 Main program

The main program begins with questions of the number of differentn to use, beginning from
n = 2, and the intervals, allowing maximumn = 50. precision andtrials are also
queried. Ado loop is used toget_data for the set values ofn, and they are stored in an array.

3.5 Least squares fit of the data:subroutine w_fit, r2_fit

From eq. 1, we get the logarithmic dependences

lnw = lna + g lnn+ �n (2)

lnhr

2

i = ln
+ � lnn (3)

Equation 3 suggests a simple linear regression. The NAG routine G02CAF is used to obtain

; � and their standard errors.

Eq. 2 is more complicated, and it requires a generalized linear regression of the formy =

a+ bx

1

+
x

2

. The suitable NAG routine for this is G02DAF.
The subroutinesw_fit, r2_fit are wrapper scripts around the NAG routines G02DAF

and G02CAF respectively, to make the main program cleaner. This is particularly important
for the latter routine, which has more than twenty arguments, although only a few of them are
directly shared with the main program.

3.6 Performance optimizations

Besides the obvious guideline of searching the shortest code for a given algorithm, there was
another general idea that appeared to reduce processing time. Variables should not be initialized
and deleted unnecessarily. For instance, the constantmodifier array used inpropagate is
initialized outside the subroutine. This subroutine is being called the most often, so it was useful
to reduce the number of variables initialized every time. This principle has, in many cases,
been compromised by clarity; otherwise the number of variables passed to and from subroutines
would grow too large to be handled conveniently. But since the calls topropagate are the
most critical to performance, it was decided to initialize all its variables outside.

In addition, the-O compiler flag was used to add some umph to the binary. As a result, the
execution time was approximately halved.

6

4 Results and discussion

4.1 Execution performance

After implementing the optimization techniques discussedin section 3.6, a significant increase in
processing speed was observed. The processing time was reduced to roughly one quarter of the
original. The optimum number of trials per set was found to besomewhere between 10 and 15.
Whenn = 2; 3; 4; :::50, precision = 10

�3, the results were produced in about 30 minutes.

4.2 Debugging

Much of the debugging information was found by printing values of variables at several points
of the program. At the very least, these would indicate the point in the code where the program
crashes, and often provide specific information. For instance, the success fraction was printed out
after each set of trials - its value should stay roughly constant and gradually converge until reach-
ing the required precision. It could also be checked that thesuccess fraction had a reasonable
value, decreasing withn.

Forn = 2; 3; 4 the success fraction has to be unity; therefore, the resultingw could be readily
predicted. The values6; 30 and150 were produced as expected, so the basic construction of the
chains was shown to be correct. Forn > 4 the code was, of course, the same but proceeded
further. Reasonable values of the success fraction, combined with this fact, suggest that the code
is basically correct.

Probably the most complete and direct proof of correct working is the plotting of graphs 1 -
4. There the data points and the resulting functions were combined. It could immediately be seen
if, for example, two parameters had been swapped by accident. More importantly, the degree of
correlation between the data points and the curves based on equations 1 could be quickly verified.

Using short scripts, the graphs were produced automatically from the output files, so this test
could be repeated easily.

4.3 Numerical results

A snapshot of the results from one run of the program is provided here:

n

min

= 2

n

interval

= 1

n

max

= 50

trials=set = 13

pre
ision = 10

�3

a = 0:23� 0:02

g = 0:21� 0:05

� = 1:541� 0:003

 = 0:6� 0:8

� = 1:36� 0:03

7

The data, along with curves based on the resulting parameters, are plotted in figures 1 - 4 to
illustrate the degree of correlation with the theory.

It should be noted that this is merely an example of the possible results; different test runs
with the same input parameters give slightly varying results. However, they are mostly consistent
within the uncertainty limits. It might be considered to runseveral instances of the simulation
and average the results, but the same degree of accuracy should be reached with a single run of
sufficient duration, i.e. using a small enough value ofprecision.

The correlation ofhr2i vsn is apparent from figures 3 and 4. There is considerable scattering
in the values ofhr2i at highn, particularly in graph 3. Nevertheless, the computationalimpli-
cation is that the constant of proportionality
, not�, is the one with relatively high uncertainty.
This is well apparent from figure 4: the gradient� is fairly precise with a2% standard error, and
this clearly singles out the theoretical model which predicts� = 4=3.

The correlation betweenw andn is slightly more difficult to assess. While the theoretical
formula ofw(n) fits the data rather well, the apparent effect ofg is suppressed by the exponential
factor. Neither of the figures 1 or 2 can be used for the graphical evaluation ofg. Computation-
ally, this is reflected in the high relative uncertainty ofg.

4.4 Errors and possible improvements

The relatively high level of scattering of data points relating hr2i andn may be an effect of the
fact that we decided the sufficient number of repetitions on the basis of the precision ofw, not
hr

2

i. One might want to modify the program to test the convergenceof hr2i instead, perhaps even
both at the same time. However, it was curious to note that improving precision had very
little effect on the degree of scattering ofhr2i - it was roughly the same with anyprecision
less that10�2. Since the convergence test only applies to a single data point (i.e. value ofn), the
problem of scattering cannot be directly solved via this method. It might even be the case that
the quirks in the distribution ofhr2i are inherent in the cubic cellular model.

A further source of fluctuations between the results in separate runs may be the imperfection
of the random number generator. Truly random numbers cannot, in principle, be generated by
conventional computers.

Furthermore, it was occasionally the case that the success fraction converged very rapidly,
only after a couple of iterations, even for largen which usually took hundreds of sets of trials to
converge. The values ofw andhr2i would then differ considerably from a ’good’ value which
would be obtained with many more iterations. Be it due to the poor quality of random numbers
or some ofher fluke, the problem is difficult to tackle with theprinciples used here.

As an aside, the idea occurred whether the number of possibletrials should be5n�2 with or
without the factor of six. It might be argued that the variations obtained by rotating one chain
to give the six different directions are not physically distinct, as long as there is nothing else in
the system, and therefore should be treated as the same state. Moreover, should the rotation of
the cubic grid w.r.t our reference frame by, say,45

Æ be considered a separate state? However,
for the purposes of this simulation is suffices to say that, provided the cubic grid is the reference
frame, and the model will be applied to a system of several polymer chains (i.e. macroscopic
systems), then the number of different orientations is precisely six. Besides, in this exercise

8

0

10

20

30

40

50

60

70

80

0.5 1 1.5 2 2.5 3 3.5 4

lnw

lnn

lnw

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

ln a+ g lnn+ �n

Figure 1:lnw vs. lnn

0

10

20

30

40

50

60

70

80

0 5 10 15 20 25 30 35 40 45 50

lnw

n

lnw

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

ln a+ g lnn+ �n

Figure 2:lnw vs.n

9

0

20

40

60

80

100

120

140

160

0 5 10 15 20 25 30 35 40 45 50

hr

2

i

n

hr

2

i

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

n

�

Figure 3:hr2i vsn

0

1

2

3

4

5

6

0.5 1 1.5 2 2.5 3 3.5 4

lnhr

2

i

lnn

lnhr

2

i

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

ln
+ � lnn

Figure 4:lnhr2i vs. lnn

10

we are primarily interested in the exponents ofn in the expressionsw(n); hr

2

i(n) on which the
prefactor of5n�2 has no effect.

5 Conclusions

The number of configurations and the mean end-to-end distance of a polymer chain ofn units,
n = 2:::50, were investigated using a cellular based Monte Carlo approach. Analysis of the
resulting data points(w; n; hr2i) support the theoretically predicted relations

w / n

g

e

�n

hr

2

i / n

�

and the exponents ofn were found to be

g = 0:21� 0:05

� = 1:36� 0:03

References

[1] Computational Physics, Course material; P. Alexander,Cavendish Laboratory 2000

[2] Fortran 90 Essentials, Cornell Theory Center, http://www.ccwr.ac.za/ccwr/users/kure/more.html

[3] NAG FORTRAN 77 Library Reference

11

APPENDIX

A Program source

program polymer
implicit none

!n = number of polymer units, between 2 and 50
!w = number of configurations (as in S = k ln w)
integer, parameter :: dp = kind(1.0d0)

integer n, i, j, n_interval, no_results, trials
real (kind=dp), dimension(:, :), allocatable :: results, w_reg_data, r_reg_data
real precision !relative precision required of w

integer, parameter :: n_min = 2

real (kind=dp) :: data_array(2), w_params(2, 3), r_params(2, 2)

1 print *, "n_min =", n_min,". Enter the interval and number of n-values:"
read *, n_interval, no_results
print *, "n_max is ", n_min + (no_results-1)*n_interval
if (n_interval .lt. 1) then

print *, "n_interval should be an integer .ge. 1"
goto 1

elseif(n_interval*(no_results-1) .gt. 48) then
print *, "maximum n should be .le. 50"
goto 1

endif

2 print *, "Enter the required precision (percentage, 0.1 to 10)"
print *, "used as the convergence limit of fraction:"
read *, precision
if (precision .ge. 0.1 .and. precision .le. 10) then

precision = real(precision) / real(100)
else

goto 2
endif

3 print *, "Enter the number of trials per set (1 to 100)"
read *, trials

12

if (trials .gt. 100 .or. trials .lt. 1) then
goto 3

endif

print *, ""
print *, " n w <r^2>"
print *, ""

allocate(results(3, no_results))
allocate(w_reg_data(3, no_results))
allocate(r_reg_data(2, no_results))

!obtain sets of w, r2 for each n
do i = 1, no_results

n = n_min + n_interval*(i-1)
data_array = get_data(n, trials, precision)
results(1, i) = n
results(2:3, i) = data_array !w, mean_r2
print *, results(:, i)

enddo

!ln w = ln a + g ln n + alpha n
w_reg_data(1, :) = log(results(2, :)) !ln w
w_reg_data(2, :) = log(results(1, :)) !ln n
w_reg_data(3, :) = results(1, :) !n

!ln r2 = ln c + theta ln n
r_reg_data(1, :) = log(results(3, :)) !ln mean_r2
r_reg_data(2, :) = log(results(1, :)) !ln n

print *, "Parameters a, g, alpha, c and theta in"
print *, "w = a * n**g * exp(alpha*a)"
print *, "mean r**2 = c * n**theta"
print *, ""

w_params = w_fit(no_results, w_reg_data)
print *, "a = ", exp(w_params(1, 1)), "+/-", &

exp(w_params(1, 1))*w_params(2, 1)
print *, "g = ", w_params(1, 2), "+/-", w_params(2, 2)
print *, "alpha = ", w_params(1, 3), "+/-", w_params(2, 3)

r_params = r_fit(no_results, r_reg_data)
print *, "c = ", exp(r_params(1, 1)), "+/-", &

exp(r_params(1, 1))*r_params(2, 1)
print *, "theta = ", r_params(2, 1), "+/-", r_params(2, 2)

13

!output data points to files for gnuplot
open(1, file=’r2.dat’, status=’replace’)
do i=1, no_results

!ln n, ln r2, n, r2 - gnuplot can then select appropriate pairs for plotting
write (1, *) r_reg_data(2, i), r_reg_data(1, i), results(1, i), &

results(3, i)
enddo
close(1)

open(1, file=’w.dat’, status=’replace’)
do i=1, no_results

!n, log(n), log(w) - ditto for gnuplot
write(1,*) w_reg_data(3, i), w_reg_data(2, i), w_reg_data(1, i)

enddo
close(1)

!write parameters to files for gnuplot curve drawing
open(1, file=’w-params.plot’, status=’replace’)
write(1, *) "a = ", exp(w_params(1, 1))
write(1, *) "g = ", w_params(1, 2)
write(1, *) "alpha = ", w_params(1, 3)
close(1)

open(1, file=’r2-params.plot’, status=’replace’)
write(1, *) "c = ", exp(r_params(1, 1))
write(1, *) "theta = ", r_params(2, 1)
close(1)

!write output of parameters for TeX
open(1, file=’params.tex’, status=’replace’)
write(1, *) "\[\begin{array}{l}"

write(1, *) "n_{\rm min} = ", n_min, "\\"
write(1, *) "n_{\rm interval} = ", n_interval, "\\"
write(1, *) "n_{\rm max} = ", n_min + (no_results-1)*n_interval, "\\"
write(1, *) "{\rm trials/set} = ", trials, "\\"
write(1, *) "{\rm precision} = ", precision, "\\ \\"

write(1, *) "a = ", exp(w_params(1, 1)), "\pm", &
exp(w_params(1, 1))*w_params(2, 1), "\\"

write(1, *) "g = ", w_params(1, 2), "\pm", w_params(2, 2), "\\"
write(1, *) "\alpha = ", w_params(1, 3), "\pm", w_params(2, 3), "\\"
write(1, *) "c = ", exp(r_params(1, 1)), "\pm", &

exp(r_params(1, 1))*r_params(2, 1), "\\"

14

write(1, *) "\theta = ", r_params(2, 1), "\pm", r_params(2, 2)
write(1, *) "\end{array}\]"
close(1)

deallocate(results)
deallocate(w_reg_data)
deallocate(r_reg_data)

contains
function r_fit(n, r_reg_data)
!get regression parameters c and theta in r2 = c * N**theta
!notice here n = no_results..
integer, parameter :: dp = kind(1.0D0)
integer :: ifail = 0, n
real (kind=dp), dimension(:), allocatable :: x, y
real (kind=dp), dimension(:, :) :: r_reg_data
real (kind=dp), dimension(20) :: result
real (kind=dp), dimension(2, 2) :: r_fit

allocate(x(n))
allocate(y(n))

x = r_reg_data(2, :) !ln n
y = r_reg_data(1, :) !ln r2

call g02caf(n, x, y, result, ifail)

deallocate(x)
deallocate(y)

r_fit(1, 1) = result(7) !reg. constant, i.e. log(c)
r_fit(1, 2) = result(9) !its std.dev.

r_fit(2, 1) = result(6) !reg. coefficient, i.e. theta
r_fit(2, 2) = result(8) !its std.dev.

end function r_fit

function w_fit(n, w_reg_data)
!get regression parameters a, alpha, g in w = a * N**g * exp(alpha*N)
!but here n = number of results... (for the NAG routine)
integer, parameter :: dp = kind(1.0D0), ip = 3, m = 2
integer, intent(in) :: n
integer :: idf, irank, ldx, ldq, ifail = 0
real (kind=dp) :: rss, tol = 0.000001

15

real (kind=dp), dimension(2, 3) :: w_fit
real (kind=dp), dimension(:, :), intent(in) :: w_reg_data
integer, dimension(2) :: isx = 1
real (kind=dp) :: b(ip), se(ip), cov(ip*(ip+1)/2), q(n, ip+1), x(n, m), &

y(n), wt(n), res(n), h(n), p(2*ip+ip*ip), wk(5*(ip-1)+ip*ip)
logical svd

!m: use constant term; u: data not weighted
character*1 :: mean = ’m’, weight = ’u’

y = w_reg_data(1, :)
x = reshape(w_reg_data(2:3, :), shape = (/n, 2/), order = (/2, 1/))
wt = 1
ldx = n
ldq = n

call G02DAF(MEAN, WEIGHT, N, X, LDX, M, ISX, IP, Y, WT, RSS, IDF, &
B, SE, COV, RES, H, Q, LDQ, SVD, IRANK, P, TOL, WK, IFAIL)

w_fit(1, :) = b(1:3) !a, g, alpha
w_fit(2, :) = se(1:3) !their standard errors

end function w_fit

function get_data(n, trials, precision)
real (kind=dp), dimension(2) :: get_data
integer, dimension(:, :, :), allocatable :: grid
real (kind=dp) fraction_old, fraction_new, w, mean_r2
real precision
integer successes, n, trials, sum_r2

!make space
allocate(grid(-n:n, -n:n, -n:n))

successes = 0
sum_r2 = 0
mean_r2 = 0
call make_chains(grid, n, trials, successes, sum_r2)
fraction_old = real(successes) / real(trials)
!print *, fraction_old
!letting successes cumulate, we compute the fraction of total
!successes in total trials , and stop when an additional set of
!trials makes a difference less than precision.
do j = 1, 1000000

call make_chains(grid, n, trials, successes, sum_r2)

16

fraction_new = real(successes) / real(trials*(j+1))
if (fraction_new + fraction_old == 0 .or. j < 2) then

continue
elseif(2*abs((fraction_new-fraction_old)/(fraction_new+fraction_old)) &

< precision) then
exit

endif
fraction_old = fraction_new
!print *, fraction_old

enddo

deallocate(grid)

w = fraction_new * real(6) * real(5)**real(n-2)
mean_r2 = real(sum_r2) / real(successes)

get_data(1) = w
get_data(2) = mean_r2

end function get_data

subroutine make_chains(grid, n, trials, successes, sum_r2)
!build a polymer chain <trials> times. Test for failure.
!For successful chains, compute r2.
logical :: failed
integer, intent(in) :: n, trials
integer k, l, r2, successes, sum_r2, i, j
real rand
integer, dimension(6, 3) :: modifier = reshape((/1, 0, 0, -1, 0, 0, &

0, 1, 0, 0, -1, 0, 0, 0, 1, 0, 0, -1/), (/6, 3/), order=(/2, 1/))

!coordinates for new unit & the one before that
integer, dimension(3) :: curpoint, prevpoint

!six directions to go, but one of them (prevpoint) will be removed
integer, dimension(6, 3) :: nearpoints
integer, dimension(5, 3) :: newpoints

!the space
integer, dimension(-n:n, -n:n, -n:n) :: grid

do l = 1, trials

!fill space with zeros
grid = 0

17

!insert first unit
grid(0, 0, 0) = 1

!we start in the x-direction
curpoint(1) = 1
curpoint(2) = 0
curpoint(3) = 0

prevpoint = 0

!insert the following unit, propagate to next coordinate,
!check if we can insert a unit there
failed = .false.
do k = 1, n - 2

grid(curpoint(1), curpoint(2), curpoint(3)) = 1
call propagate(curpoint, prevpoint, modifier, nearpoints, &

newpoints, rand, i, j)
if (grid(curpoint(1), curpoint(2), curpoint(3)) == 1) then

failed = .true.
exit

endif
enddo

if (.not. failed) then
successes = successes + 1
r2 = curpoint(1)**2 + curpoint(2)**2 + curpoint(3)**2
sum_r2 = sum_r2 + r2

endif

enddo

end subroutine make_chains

subroutine propagate(curpoint, prevpoint, modifier, nearpoints, newpoints, &
rand, i, j)

!move curpoint to the next point

real rand
integer i, j
integer, dimension(3) :: curpoint, prevpoint

!six directions to go, but one of them (prevpoint) will be removed
integer, dimension(6, 3) :: nearpoints, modifier
integer, dimension(5, 3) :: newpoints

18

do i=1, 6
nearpoints(i, :) = curpoint

enddo

!turn ’nearpoints’ into the actual points near curpoint
nearpoints = nearpoints + modifier

!copy these into newpoints, except the one which coincides with prevpoint
j = 1
do i = 1, 6

if(any(nearpoints(i, :) /= prevpoint)) then
newpoints(j, :) = nearpoints(i, :)
j = j + 1

endif
enddo

prevpoint = curpoint

!choose the new point
call random_number(rand)
i = int(5*rand) + 1
curpoint = newpoints(i, :)

end subroutine propagate

end program polymer

19

