Polymer simulation:
Configurational entropy and mean end-to-end distance
of chains via Monte Carlo method

Risto-Antti Paju, Queens’ College, Cambridge
17th January 2001

Part Il Physics, Computational Physics exercise

Except where specific reference is made to the work of otligissyvork is original and has
not been already submitted either wholly or in part to sptesfy degree requirement at this or
any other University.

Risto A Paju

Abstract

The numberw of possible configurations of a polymer moleculexahonomer units has
been investigated in a cellular cubic grid simulation. thulti-occupancy of monomers in
one cell were allowedy would have the valué x 5" 2; a Monte Carlo method has been
implemented to test what fraction of these are possible vglti-occupancy is forbidden.

In addition, the mean end-to-end distaricé) has been computed.

These procedures have been performed with models whemeges from 2 to 50, and the
functional dependence af and(r?) onn has been investigated. Theoretical considerations
have suggested the models

w o< nIe*”
(r?) n?

whereg, « andé are constants. The exponentsnmofvere found to be

g=0.21+0.05
0 = 1.36 £ 0.03

The value of) obtained here gives substantial support for a theory whieliptsé = 4/3.

Contents

1 Introduction 4
2 Computational approach 4
3 Implementation 5
3.1 Chainpropagation. 5
3.2 Constructingcompletechains. 5
3.3 Repetition 5
3.4 Mainprogram e e e e e e
3.5 Functionfittingofthedata 6
3.6 Performance optimizations e 6
4 Results and discussion 7
4.1 Executionperformance e e 7
4.2 Debugging. e
4.3 Numericalresults e 7
4.4 Errors and possible improvements L e 8
5 Conclusions 11
A Program source 12

1 Introduction

The numbenw of possible configurations of a polymer molecule is esskftareentropy calcu-
lations: S = kg lnw. Its dependence on the numbeof monomer units is the subject of this
simulation. In addition, the mean square end-to-end distar?) of the polymer chains are
computed, and their relation tois investigated.

Theoretical models suggest the functional relations

ean

0 1)

w = an?
(r*y = cn

wherea, g, a, ¢ andf are constants. Different models have predicied be eitherl.17, 6/5 or
4/3. The simulation aims to determine which of these is clogesbtrect (within the scope of
this type of simulation).

The question is approached with a simplified cellular moHath monomer unit will occupy
a cell in a cubic grid. A chain is built up starting from two tgj)iby adding a unit to one of the
adjacent face-sharing cells of the previously added monoiftges would givew = 6 x 572,
but the actual number must be less because a cell may onlydo@ied by one unit. A Monte
Carlo method is implemented to find what fraction of the 5”2 configurations are allowed.

The FORTRAN programming language is used to implement tnelsition. NAG routines
are used to extract approximationsaof, ,, c andf from the data obtained from the simulation.

2 Computational approach

The most basic starting point would be to build up all possitbnfigurations and count the
number. However, this is not computationally viable. Eaolymer begins with a unit at the
origin and another one in an adjacent face-sharing cellmRteen on, there are five directions
in which to continue after adding each monomer, so the tataiber would bes x 5" 2. For

n = 50 this would give aw in the order of10%*. However, because the multi-occupancy of
cells is forbidden, the actual number is considerably ssnaMevertheless, it is too large to be
computed in a reasonable time.

A Monte Carlo approach is used to circumvent this problem.ufber of polymer chains
are built up randomly, using the random number function wosle one of the five directions at
each stage. When the polymer overlaps with itself, the cisanonsidered a failure. A certain
fraction of all attempted chains will be successful, and éxpected that this fraction, multiplied
by 6 x 5"~2, gives a reasonable approximation of the number of all ptessbnfigurations.

The polymer chains are constructed in a 'space’ 8hax 2n x 2n matrix whose elements
are initially set to zero. A monomer unit in a cell is markeddayting that element of the matrix
to one. Failure is indicated, if the system attempts to irsenonomer into a cell with the value
one.

While there are many kinds of possibilities for the failufebailding up a chain, depending
on the number of overlaps, it suffices to stop the build-uprapdrt failure when the first overlap
is encountered. The correct number of successful chairigtasned in any case.

4

The number of trials for a given is crucial to the success of the Monte Carlo method.
Clearly, a larger number is required for largerbut the relation between the two numbers is not
obvious. The solution is to process sets of trials, keepeegnd of the total number of successes
and trials. If, as the result of a further set of trials, thecass fraction changes by less than a
certain measure of precision, the number of total trialsttegs sufficient.

For each successful chain, the valuerdf the squared end-to-end distance, is added to a
cumulative sum, and the me&rt) is easily calculated at the end.

After repeating the above procedures for differentwe have sets ofn, w, (r?)). Least-
squares methods are then used to compute the constant permmeq. 1.

3 Implementation

The explanation of the program below does not attempt toviothe order of procedures in the
code. Rather, it reflects the way in which the program wasadlgtplanned and written, from
the simple, core routines to the higher-level wrapper ptaces.

The construction of a polymer chain begins from the origintii@ centre of the grid) and
the next unit is always placed &t,0,0). While this is only one of the six possible starting
directions, the symmetry of the problem implies it is a correhoice, as long as the for all
(even overlapping) polymers éx 5" 2, the number obtained from considering all six starting
directions.

3.1 Propagation of the chain by one unit:subr out i ne propagate

For the purpose of choosing the allowed direction of propagaa record is kept of the last
inserted monomercur poi nt) and the one before thgt(evpoi nt).

The coordinates of the six closest neighbour cellsufpoi nt are recorded into a list. The
one of these which coincides wifit evpoi nt is removed from the list. One of the remaining
five points is chosen at random, and it will become the newpoi nt .

3.2 Constructing complete chainssubr out i ne nake_chai ns

If this new point in the grid has the value zero, a new unit geitted into it, by setting its value
to one. The construction can then proceed. If an overlapaswertered, failure is reported.

The propagation routine and the above test are repeatddaihtre, or until » monomers
have been used. In the latter caseis computed and added to a cumulative?, and asuc-
cesses counter is incremented. The construction is repeatedriyal s, the number of trials
in a set.

3.3 Repetition: subr outi ne get _data

Initially, one set of trials is performed. Ao loop is then used to repeat the sets until the required
precision is reached; since thes proportional to the success fraction, it suffices to complae

fractions after and: — 1 sets of trials. Specifically, the condition for sufficientwergence is

2(fractionyey — fractiongq)

; . < precision
fraction,e, + fractiongy

During all of the above subroutines, variables suchascesses, total trials andy" 2 are
accumulated. When the convergence limit has been reaghauail (r?) are computed.

3.4 Main program

The main program begins with questions of the number of wiffen to use, beginning from
n = 2, and the intervals, allowing maximum = 50. preci si on andtri al s are also
gueried. Ado loop is used tget _dat a for the set values ai, and they are stored in an array.

3.5 Leastsquares fit of the datasubroutine w fit, r2 fit

From eq. 1, we get the logarithmic dependences

Inw=1Ina+glnn+an (2)

In(r?) =Inc+0Inn (3)

Equation 3 suggests a simple linear regression. The NAG®@02CAF is used to obtain
¢, 8 and their standard errors.

Eq. 2 is more complicated, and it requires a generalizeciinegression of the form =
a + bx; + cxy. The suitable NAG routine for this is GO2DAF.

The subroutinesy fit, r2 fit are wrapper scripts around the NAG routines GO2DAF
and GO2CAF respectively, to make the main program cleanéis i§ particularly important
for the latter routine, which has more than twenty argumealtiough only a few of them are
directly shared with the main program.

3.6 Performance optimizations

Besides the obvious guideline of searching the shortest émda given algorithm, there was
another general idea that appeared to reduce processiag\ariables should not be initialized
and deleted unnecessarily. For instance, the constzdhtf i er array used irpr opagat e is
initialized outside the subroutine. This subroutine isWeatalled the most often, so it was useful
to reduce the number of variables initialized every time.isTgrinciple has, in many cases,
been compromised by clarity; otherwise the number of véggpassed to and from subroutines
would grow too large to be handled conveniently. But sinaedalls topr opagat e are the
most critical to performance, it was decided to initialileta variables outside.

In addition, the- O compiler flag was used to add some umph to the binary. As atydisel
execution time was approximately halved.

4 Results and discussion

4.1 Execution performance

After implementing the optimization techniques discussesiction 3.6, a significant increase in
processing speed was observed. The processing time waetetturoughly one quarter of the
original. The optimum number of trials per set was found tstmewhere between 10 and 15.
Whenn = 2, 3,4, ...50, pr eci si on = 1073, the results were produced in about 30 minutes.

4.2 Debugging

Much of the debugging information was found by printing \edwof variables at several points
of the program. At the very least, these would indicate thatpo the code where the program
crashes, and often provide specific information. For instathe success fraction was printed out
after each set of trials - its value should stay roughly camisind gradually converge until reach-
ing the required precision. It could also be checked thastleeess fraction had a reasonable
value, decreasing with.

Forn = 2, 3, 4 the success fraction has to be unity; therefore, the regulticould be readily
predicted. The value& 30 and150 were produced as expected, so the basic construction of the
chains was shown to be correct. For> 4 the code was, of course, the same but proceeded
further. Reasonable values of the success fraction, cadbiith this fact, suggest that the code
is basically correct.

Probably the most complete and direct proof of correct waghks the plotting of graphs 1 -

4. There the data points and the resulting functions wereogued. It could immediately be seen
if, for example, two parameters had been swapped by accitfre importantly, the degree of
correlation between the data points and the curves basegbatiens 1 could be quickly verified.

Using short scripts, the graphs were produced automatitatin the output files, so this test
could be repeated easily.

4.3 Numerical results
A snapshot of the results from one run of the program is pexvigere:

Nmin = 2

Ninterval = 1
Nmax = 90
trials/set = 13
precision = 1073

a=0.23+0.02
g=021+0.05

o = 1.541 £ 0.003
c=06+038

0 =1.36+0.03

7

The data, along with curves based on the resulting parasyetex plotted in figures 1 - 4 to
illustrate the degree of correlation with the theory.

It should be noted that this is merely an example of the ptessdsults; different test runs
with the same input parameters give slightly varying resitowever, they are mostly consistent
within the uncertainty limits. It might be considered to rseveral instances of the simulation
and average the results, but the same degree of accurady fieoreached with a single run of
sufficient duration, i.e. using a small enough valu@oé&ci si on.

The correlation ofr?) vsn is apparent from figures 3 and 4. There is considerable sicafte
in the values ofr?) at highn, particularly in graph 3. Nevertheless, the computatidamli-
cation is that the constant of proportionalitynot, is the one with relatively high uncertainty.
This is well apparent from figure 4: the gradiéris fairly precise with 2% standard error, and
this clearly singles out the theoretical model which prestic= 4/3.

The correlation betweemw andn is slightly more difficult to assess. While the theoretical
formula ofw(n) fits the data rather well, the apparent effecy & suppressed by the exponential
factor. Neither of the figures 1 or 2 can be used for the grapleraluation ofy. Computation-
ally, this is reflected in the high relative uncertaintygof

4.4 Errors and possible improvements

The relatively high level of scattering of data points rieigt(r*>) andn may be an effect of the
fact that we decided the sufficient number of repetitionshenttasis of the precision af, not
(r?). One might want to modify the program to test the convergef¢e?) instead, perhaps even
both at the same time. However, it was curious to note thatampg pr eci si on had very
little effect on the degree of scattering @f) - it was roughly the same with amyr eci si on
less thatl0—2. Since the convergence test only applies to a single datd (i@. value of»), the
problem of scattering cannot be directly solved via thishrodt It might even be the case that
the quirks in the distribution ofr?) are inherent in the cubic cellular model.

A further source of fluctuations between the results in sgpauns may be the imperfection
of the random number generator. Truly random numbers cammptinciple, be generated by
conventional computers.

Furthermore, it was occasionally the case that the succastoin converged very rapidly,
only after a couple of iterations, even for largevhich usually took hundreds of sets of trials to
converge. The values af and(r?) would then differ considerably from a 'good’ value which
would be obtained with many more iterations. Be it due to therguality of random numbers
or some ofher fluke, the problem is difficult to tackle with fiéciples used here.

As an aside, the idea occurred whether the number of pogsilie should bes”~2 with or
without the factor of six. It might be argued that the vanas obtained by rotating one chain
to give the six different directions are not physically tist, as long as there is nothing else in
the system, and therefore should be treated as the sameMtateover, should the rotation of
the cubic grid w.r.t our reference frame by, s&¥; be considered a separate state? However,
for the purposes of this simulation is suffices to say thatyigied the cubic grid is the reference
frame, and the model will be applied to a system of severajrpet chains (i.e. macroscopic
systems), then the number of different orientations isipedg six. Besides, in this exercise

8

80

I
O Inw
Ina+glnn+ an
70 —
60 -
50 -
In w40 —
30 -
20 -
10 -
0
0.5 4
Inn
Figure L:lnw vs.Inn
80 T T T T
O lnw : : : : :
oL T Imatglnton i

60

50

In w40

30

20

10

Figure 2:Inw vs.n

160 :

140 R e IR —

o In(r?)
Inc+60lnn

Inn

Figure 4:In(r?) vs.Inn

10

we are primarily interested in the exponentsiugh the expressions (n), (r?)(n) on which the
prefactor of5” 2 has no effect.

5 Conclusions

The number of configurations and the mean end-to-end distaing polymer chain of units,
n = 2...50, were investigated using a cellular based Monte Carlo aggbro Analysis of the
resulting data pointéw, n, (r?)) support the theoretically predicted relations

w X nIe*™
(r?y oc n?

and the exponents af were found to be

g=0.21+0.05
0 = 1.36 +0.03

References

[1] Computational Physics, Course material; P. Alexan@axendish Laboratory 2000
[2] Fortran 90 Essentials, Cornell Theory Center, httppwccwr.ac.za/ccwr/users/kure/more.html

[3] NAG FORTRAN 77 Library Reference

11

APPENDIX

A Program source

program pol ymer
inmplicit none

I'n = nunber of polynmer units, between 2 and 50

!'w = nunber of configurations (as in S =k In w

i nteger, paraneter :: dp = kind(1.0d0)

integer n, i, j, n_interval, no_results, trials

real (kind=dp), dinension(:, :), allocatable :: results, wreg data, r_reg data
real precision !relative precision required of w

i nteger, parameter :: n_mn =2

real (kind=dp) :: data_array(2), w parans(2, 3), r_paranms(2, 2)

1 print *, "n.nmn =", nmn,". Enter the interval and nunber of n-val ues:"
read *, n_interval, no_results
print *, "n_nmax is ", n_mn+ (no_results-1)*n_interva
if (n_interval .It. 1) then
print *, "n_interval should be an integer .ge. 1"
goto 1

el seif(n_interval *(no_results-1) .gt. 48) then
print *, "maxi numn should be .le. 50"
goto 1

endi f

2 print *, "Enter the required precision (percentage, 0.1 to 10)"
print *, "used as the convergence linit of fraction:"
read *, precision
if (precision .ge. 0.1 .and. precision .le. 10) then
precision = real (precision) / real (100)
el se
goto 2
endi f

3 print *, "Enter the nunber of trials per set (1 to 100)"
read *, trials

12

if (trials .gt. 100 .or. trials .It. 1) then
goto 3
endi f

print *,
print *, " n w <rN2>"
print *,

all ocate(results(3, no_results))
all ocate(w reg data(3, no_results))
al l ocate(r_reg_data(2, no_results))

lobtain sets of w, r2 for each n

doi =1, no_results
n=n_mn+ n_interval *(i-1)
data_array = get_data(n, trials, precision)
results(l, i) =
results(2:3, i)

=N

data_array !w, nean_r2

print *, results(:, i)
enddo
''nw=1Ina+glnn+ alphan
wreg data(l, :) = log(results(2, In w

))
log(results(l, :)) !'Inn
results(l, :) !n

w_reg data(2, :)
w reg_data(3, :)

'Inr2 =Inc + thetalnn

r reg data(l, :) = log(results(3, :)) !In nean_r2
r reg data(2, :) = log(results(l, :)) !'lInn

print *, "Paranmeters a, g, alpha, ¢ and theta in"
print *, "w=a* n**g * exp(al pha*a)"

print *, "mean r**2 = c¢ * n**theta"

print *, ""

w params = w fit(no results, wreg data)

print *, "a =", exp(w_parans(1l, 1)), "+ -", &
exp(w_parans(1, 1))*w paranms(2, 1)

print *, "g =", wparans(l, 2), "+ -", w paranms(2, 2)

print *, "alpha =", w.parans(1l, 3), "+/-", w_parans(2, 3)

r parans = r_fit(no_results, r_reg _data)

print *, "c =", exp(r_params(1l, 1)), "+ -", &
exp(r_paranms(1, 1))*r_parans(2, 1)
print *, "theta =", r_parans(2, 1), "+/-", r_parans(2, 2)

13

loutput data points to files for gnupl ot

open(1, file="r2.dat’, status='replace’)
do i=1, no_results

'I'nn, Inr2, n, r2 - gnuplot can then select appropriate pairs for plotting

wite (1, *) r_reg_data(2, i), r_reg data(l, i), results(1, i), &

results(3, i)

enddo
cl ose(1)
open(l, file="w dat’, status='replace’)
do i=1, no_results

I'n, log(n), log(w) - ditto for gnupl ot

wite(l,*) wreg data(3, i), wreg data(2, i), wreg data(l, i)
enddo
cl ose(1)
Iwite paraneters to files for gnuplot curve draw ng
open(1, file="w parans.plot’, status='replace’)
wite(l, *) "a =", exp(w_paranms(1l, 1))
wite(l, *) "g =", w.parans(l, 2)
wite(l, *) "alpha =", w_ paranms(1l, 3)
cl ose(1)
open(1l, file="r2-params.plot’, status='repl ace’)
wite(l, *) "c = exp(r_parans(1, 1))
wite(l, *) "theta =", r_parans(2, 1)
cl ose(1)
Iwite output of parameters for TeX
open(l, file= parans.tex’, status='repl ace’)
wite(l, *) "\[\begin{array}{l}"
wite(l, *) "n{\rmmn} =", n_mn, "\\"
wite(l, *) "n_{\rminterval} = n_interval, "\\"
wite(l, *) "n{\rmmx} =", n.mn+ (no_results-1)*n_interval, "\\"
wite(l, *) "{\rmtrials/set} = trials, "\\"
wite(l, *) "{\rmprecision} =", precision, "\\ \\"
wite(l, *) "a = exp(w_parans(1, 1)), "\pn, &

exp(w_params(1l, 1))*w parans(2, 1), "\\"
wite(l, *) "g =", wparans(1l, 2), "\pnt, w paranms(2, 2), "\\"
wite(l, *) "\alpha =", w parans(1l, 3), "\pnl, wparans(2, 3), "\\"
wite(l, *) "c = exp(r_parans(1, 1)), "\pn, &
exp(r_params(1l, 1))*r_parans(2, 1), "\\"

14

wite(l, *) "\theta =", r_parans(2, 1), "\pni, r_paranms(2, 2)
wite(l, *) "\end{array}\]"
cl ose(1)

deal | ocate(resul ts)
deal | ocat e(w_reg_dat a)
deal | ocat e(r_reg_dat a)

cont ai ns
functionr fit(n, r_reg _data)
I get regression paraneters ¢ and thetain r2 = ¢ * N*theta
Inotice here n = no_results..
i nteger, paraneter :: dp = kind(1.0D0)

integer :: ifail =0, n

real (kind=dp), dinension(:), allocatable :: x, y
real (kind=dp), dinension(:, :) :: r_reg_data
real (kind=dp), dinmension(20) :: result

real (kind=dp), dimension(2, 2) :: r_fit

al | ocat e(x(n))
al l ocate(y(n))

X
y

r reg _data(2, :) !'Inn
r_reg_data(l, :) !'lInr2

call gO2caf(n, x, y, result, ifail)

deal | ocat e(x)
deal | ocat e(y)

r fit(l, 1) =result(7) 'reg. constant, i.e. |og(c)

r fit(l, 2) =result(9) !'its std. dev.

r fit(2, 1) =result(6) !'reg. coefficient, i.e. theta
r fit(2, 2) =result(8) !'its std. dev.

end function r_fit

function wfit(n, wreg data)
lget regression paraneters a, alpha, ginw=a* N*g * exp(al pha*N)

I but here n = nunber of results... (for the NAG routine)
i nteger, paraneter :: dp = kind(1.0D0), ip =3, m= 2
integer, intent(in) :: n

integer :: idf, irank, ldx, Idq, ifail =0

real (kind=dp) :: rss, tol = 0.000001

15

real (kind=dp), dinension(2, 3) :: wfit

real (kind=dp), dimension(:, :), intent(in) :: w_reg_data

integer, dinmension(2) :: isx =1

real (kind=dp) :: b(ip), se(ip), cov(ip*(ip+1)/2), q(n, ip+l), x(n, M, &
y(n), wt(n), res(n), h(n), p(2*ip+ip*ip), wWk(5*(ip-1)+ip*ip)

| ogi cal svd

!m use constant term u: data not weighted

character*l :: nmean = 'ni, weight ="'u

y = w reg_ data(l, :)

X = reshape(w reg data(2:3, :), shape = (/n, 2/), order = (/2, 1/))
w =1

ldx = n

ldg = n

cal | QGO2DAF(MEAN, VEICHT, N, X, LDX, M ISX IP, Y, W, RSS, |IDF, &
B, SE, COV, RES, H Q LDQ SVD, |RANK P, TOL, WK, |FAIL)

wfit(l, :)
wfit(2, :)

b(1:3) !a, g, alpha
se(1:3) !their standard errors

end function w fit

function get _data(n, trials, precision)
real (kind=dp), dinension(2) :: get_data
integer, dimension(:, :, :), allocatable :: grid
real (kind=dp) fraction_old, fraction_new, w, mean_r2
real precision
i nt eger successes, n, trials, sumr2

! make space
allocate(grid(-n:n, -n:n, -n:n))

successes = 0
sumr2 =0
mean_r2 = 0
call make_chains(grid, n, trials, successes, sumr?2)
fraction old = real (successes) / real (trials)
print *, fraction_old
Iletting successes cumul ate, we conpute the fraction of tota
I'successes in total trials , and stop when an additional set of
I'trials makes a difference | ess than precision.
do j =1, 1000000
call make_chains(grid, n, trials, successes, sumr?2)

16

fraction_new = real (successes) / real (trials*(j+1))
if (fraction_new + fraction_old == .or. j < 2) then
conti nue
el sei f(2*abs((fraction_newfraction_old)/(fraction_newtfraction old)) &
< precision) then
exit
endi f
fraction old = fraction_new
print *, fraction_old
enddo

deal | ocat e(gri d)

w = fraction_new * real (6) * real (5)**real (n-2)
mean_r2 = real (sumr2) / real (successes)

get data(l)
get _data(?2)

w
mean_r 2

end function get _data

subroutine nake_chains(grid, n, trials, successes, sumr2)
'build a polynmer chain <trials>tinmes. Test for failure.
I For successful chains, conpute r2.

logical :: failed

integer, intent(in) :: n, trials

integer k, |, r2, successes, sumr2, i, |j
real rand

i nteger, dinension(6, 3) :: nodifier = reshape((/1, 0, 0, -1, 0, 0, &
o, 1, o, 0, -2, 0, 0, O, 1, 0, O, -1/), (/6, 3/), order=(/2, 1/))

Il coordinates for new unit & the one before that
i nteger, dimension(3) :: curpoint, prevpoint

I'six directions to go, but one of them (prevpoint) will be renoved

i nteger, dinmension(6, 3) :: nearpoints
i nteger, dinension(5, 3) :: newpoints
It he space
integer, dimension(-n:n, -n:n, -n:n) :: grid
do!l =1, trials
Ifill space with zeros
grid =0

17

linsert first unit
grid(0, 0, 0) =1

Iwe start in the x-direction

curpoint(l) =1
curpoint(2) =0
curpoint(3 =0

prevpoint = 0

linsert the follow ng unit, propagate to next coordinate,
Icheck if we can insert a unit there
failed = .fal se.
dok =1, n- 2
grid(curpoint(1l), curpoint(2), curpoint(3)) =1
cal |l propagate(curpoint, prevpoint, nodifier, nearpoints, &

newpoi nts, rand, i, j)
if (grid(curpoint(1l), curpoint(2), curpoint(3)) == 1) then
failed = .true.
exit
endi f

enddo

if (.not. failed) then
successes = successes + 1
r2 = curpoint(1)**2 + curpoint(2)**2 + curpoint(3)**2
sumr2 = sumr2 + r2

endi f

enddo
end subroutine make_chai ns
subroutine propagate(curpoint, prevpoint, nodifier, nearpoints, newpoints, &

rand, i, j)
Imove curpoint to the next point

real rand
integer i, j
i nteger, dinension(3) :: curpoint, prevpoint

I'six directions to go, but one of them (prevpoint) will be renpved
i nteger, dimension(6, 3) :: nearpoints, nodifier
i nteger, dinension(5, 3) :: newpoints

18

do i=1, 6
near poi nts(i, :) = curpoint
enddo

I'turn "nearpoints’ into the actual points near curpoint
near poi nts = nearpoints + nodifier

I copy these into newpoints, except the one which coincides with prevpoint

j =1
doi =1, 6
i f(any(nearpoints(i, :) /= prevpoint)) then
newpoi nts(j, :) = nearpoints(i, :)
j =i +1
endi f
enddo

prevpoi nt = curpoi nt

I choose the new poi nt

call random nunber (rand)

i =int(5*rand) + 1

cur poi nt = newpoi nts(i, :)

end subroutine propagate

end program pol ymer

19

